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ABSTRACT OF THE THESIS 

Classification of Wolf Call Types Using Remote Sensor 
Technology 

by 
Deborah Curless  

Master of Science in Computer Science  
San Diego State University, 2007 

 
There is an increasing amount of research with the goal of understanding wildlife 

found in our environment.  Observing the behavior of a species, including vocalizations, is 
fundamental to this goal.  Researchers in the biological sciences have traditionally had to 
gather their observations manually, with a great deal of labor-intensive tasks.  It would be 
beneficial to design and build a system that automatically gathers and analyzes this 
behavioral data. 

This thesis presents such a system.  Our system starts with a remote sensor that uses 
digital signal processing to automate data acquisition.  The system then sends the acquired 
data to a remote lab via a high-speed wireless network for processing.  Once the data is in the 
lab, our system classifies the data using hidden Markov models.  The goals of this research 
are to build this system with the best possible level of performance, and to answer whether a 
pattern recognition system based on hidden Markov models can classify wolf call types with 
a reasonable level of success. 
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CHAPTER 1 

INTRODUCTION 

The goal of many research studies in the biological sciences is to understand wildlife 

in our environment.  Of these research projects, many are centered around studying the 

behavior of a particular animal species.  Gathering behavioral data, including vocalization 

data, is fundamental to studying an animal’s behavior.  The amount of data that these studies 

require is often substantial.  This can be an imposing task when handled manually. 

By itself, collecting large amounts of data is not necessarily useful unless its analysis 

can produce meaningful results.  One common analysis problem is distinguishing between 

classes of data.  "Signal detection and classification are necessary to provide useful 

information about large acoustic datasets which cannot be effectively summarized by human 

staff due to cost and time constraints." [1]   

This presents an opportunity to design and build a system that automates the tasks of 

collecting and analyzing behavioral data.  The fact that the process of collecting the data can 

involve many repetitive, time-consuming tasks makes it ideally suited for computers.  For 

example, signal detection is a good technique for automating the process of collecting 

vocalization samples.  Pattern recognition methods can be used to solve the classification 

problem.  Some examples of pattern recognition methods that have been used to automate 

classification are hidden Markov models, neural networks, and support vector machines. 

The continuous advancement of hardware technology has resulted in remote sensors 

that are smaller, cheaper, more powerful, and more robust.  Additionally, internet 
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connectivity in remote areas can provide access to data that would otherwise be difficult to 

obtain.  These innovations have contributed to the feasibility of developing such a system.   

Vocal production has been described using a source-filter model [2], where the source 

is the outflow of air from the lungs through the vocal folds, and the filter is the vocal tract.  

While it is generally accepted that this model is valid for human vocal production, research 

supports the idea that the source-filter model can be applied to nonhuman mammal 

vocalizations as well.  According to both Titze [3] and Fitch [4] the physical mechanisms 

involved in vocal production across many mammal species are very similar.  The source-

filter model is based on these physical mechanisms, and therefore it is reasonable to extend 

this model to nonhuman mammals.  In their study on vocal tract length and acoustics, Riede 

and Fitch [5] apply the source-filter model to the domestic dog (Canis familiaris).  Another 

study by Fitch [6] on vocal tract and formant frequencies in the rhesus macaques (Macaca 

mulatta) is based on the idea that the principles of the source-filter model and acoustic 

phonetics apply to nonhuman vocalizations. 

Many studies involving animal vocalizations focus on call type classification, species 

classification, and speaker identification.  One study presents a method for identifying 

dolphin species by applying pattern recognition techniques to recorded vocalizations [7].  

Specifically, Gaussian mixture models were used for the classification.  Another study 

investigated whether timber wolves (Canis lupus) use variation in vocalizations as an aid in 

individual recognition [8].   In a study on low-frequency whale sounds, spectrogram 

correlation was evaluated as a possible classification method [9].  



 

 

3 

1.1 STATEMENT OF THE PROBLEM 
The objective of this research is to build a distributed signal detection and 

classification system to classify wolf call types from recordings obtained in a remote 

location.  Hidden Markov models are used to perform the classification.  The goal is to 

evaluate whether a pattern recognition system based on hidden Markov models can classify 

wolf call types with a reasonable level of success.   

1.2 PURPOSE OF THE STUDY 
This study is done in cooperation with the California Wolf Center in Julian, 

California.  The California Wolf Center provides a very important service.  Their stated 

mission is “to increase awareness and conservation efforts in protecting and understanding 

the importance of all wildlife and wild lands by focusing on the history, biology and ecology 

of the North American Gray Wolf through education, exhibition, reproduction of endangered 

species and studies of captive wolf behavior.” [10]  Research of wildlife and how we can 

better protect it has both immediate and long-lasting benefits to our environment. 

This research is significant because it may assist the researchers and caretakers of the 

wolves at the California Wolf Center.  Vocalizations are an important part of many animals' 

behavior.  Being able to determine when or how frequently certain vocalizations occur can 

help to further understanding, care, and management of the wolves.  Experts at the California 

Wolf Center have described situations where audio monitoring would be useful [11].  For 

example, sounds of increased aggression from the pack when new pups are present can 

indicate that the pack is not accepting the litter.  Similarly, when wolves are put into a new 

pen, aggressive sounds can indicate that the animals are not getting along. 
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As part of the design of this study, we incorporated knowledge from the literature 

about wolf behavior as well as from local experts at the California Wolf Center.  The list of 

wolf call types that we attempt to classify is derived from Wolf Ethogram [12].  An ethogram 

is a list of behaviors, including vocalizations, of a specific type of animal. 

1.3 THEORETICAL BASES AND ORGANIZATION 
Research shows that hidden Markov models can be an effective method for 

classification of structured audio data.  While it is commonly applied to human speech 

recognition applications, it also can be effective in research involving animal vocalizations.  

In a comparison of bird song classification performance between a dynamic time warping 

(DTW) technique and system based on hidden Markov models, it was found that the HMM-

based system consistently outperformed the DTW-based technique.  In particular, the HMM-

based system was better able to handle relatively noisy conditions and calls that varied from 

the stereotypical call types [13].  A study on African elephants used hidden Markov models 

to investigate whether the vocalizations provide a sufficient basis for call type classification 

and speaker identification.  These classification systems showed reasonably successful 

performance [14].  In another study, hidden Markov models were used to analyze 

vocalizations of red deer (Cervus elaphus) stags [15].  In this case, the vocalizations were 

found to have characteristics that could potentially uniquely identify each individual. 

This paper will provide an overview of the theoretical and mathematical background 

for our chosen methods of signal detection and classification.  The paper will relate that 

background to the specific details of our research project.  Following will be the results of 

our research and a discussion of those results. 
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1.4 LIMITATIONS OF THE STUDY 
Some limitations of the study exist.  One of the system's components is a set of 

examples of known wolf call types that are obtained by a person listening to the wolf call and 

deciding how that call should be classified.  This process is called manual labeling.  One 

potential problem with manual labeling is that it is very subjective.  Another potential issue is 

that sounds that are faint or disrupted by wind noise may be difficult to classify.  The 

accuracy of the system depends on the consistency of the manual labeling.  Therefore, the 

Wolf Ethogram [12] was used as a guide and labels were reviewed to ensure the manual 

labeling was consistent.   

This research only uses data collected from a single location, the California Wolf 

Center.  It is therefore not known how differences in physical location, geography, species, or 

specific animals would affect the performance of the developed system. 

Studies have shown that for optimal performance, hidden Markov models require a 

substantial amount of training data.  While the employed training data set is not minimal, it is 

possible that the results could have been improved with additional training data. 
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CHAPTER 2 

METHODOLOGY 

2.1 SOUND AND SIGNAL PROCESSING 
This section provides an overview of how sound is produced and how it is 

represented digitally.  Sound is caused by a vibrating object that creates a pressure wave.  As 

the object vibrates it causes the surrounding molecules to compress and rarefy.  This 

compression and rarefaction continue outward from the object until the pressure wave 

reaches your eardrum.  Many sounds are caused by a complex combination of vibrations 

rather than a single vibrating object [16]. 

A sound pressure wave created by an oscillating source can be represented by a 

sinusoid, or sine wave.  The energy of the pressure wave determines the sine wave amplitude, 

typically measured in decibels.   The inverse wavelength of the pressure wave determines the 

sine wave frequency.  As many sounds are caused by a combination of vibrations, the sound 

pressure wave can be thought of as being represented by the sum of each of the component 

sine waves.  Another important characteristic of a sinusoidal signal is phase, which is related 

to timing [17]. 

Based on this abstract representation of a sound wave, we next describe how sound is 

represented digitally.  The sampling theorem states that an analog signal can be uniquely 

recovered from the corresponding digital signal as long as the analog signal has no 

frequencies above the Nyquist limit, which is equal to half the sampling rate.  To remove 

frequencies in the signal above the Nyquist limit, we apply an analog low-pass filter to the 

signal.  The next step is sampling which takes a measurement, or sample, of the analog signal 
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at regular time intervals.  This sample value represents the amplitude of the signal at that 

particular time.  Finally, quantization maps the continuous sample value to a discrete integer.  

The result of these operations is a discrete signal consisting of a sequence of integers.  This 

sequence is what is typically used to digitally represent sound in an audio file [16]. 

As mentioned earlier, complex sounds can be decomposed into a number of 

sinusoids, each sinusoid representing a specific amount of energy at a specific frequency.  

The result of this mapping to a linear combination of sinusoids is referred to as the frequency 

spectrum.  A frequency spectrum can be very useful in that it allows one to examine the 

amount of energy in a particular frequency range.  This can also be referred to as converting 

the information from the time domain to the frequency domain.  There are several discrete-

frequency transforms that can convert a discrete time signal into a discrete frequency 

representation. 

The short-time discrete Fourier Transform is one such transform used to decompose a 

digital signal into its component digital frequency signals.  A set of discrete target 

frequencies from the continuous frequency spectrum is obtained by dividing the frequency 

spectrum into bins spaced at regular intervals.  The number of bins is governed by the length 

of the sampled audio to be analyzed.  More bins result in a higher frequency resolution but 

with the trade-off that the time domain resolution will be poorer.  Conversely, a smaller 

number of samples in the time domain results in better time resolution but at the expense of 

frequency resolution.  Once we have selected our number of frequency bins and length of 

time, we can iteratively calculate the amplitude at each of those frequencies.  The formal 

definition of the discrete Fourier transform for a signal xN[n] with N samples is given by the 

following equation. 
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Short-time Fourier analysis sequentially processes small segments of data often 

referred to as frames.  Mathematically this is accomplished by using a window function 

which is zero everywhere except for the section corresponding to the frame.  Applying the 

window function to the signal gives us each frame.  Frame size is typically between 20 and 

30 milliseconds [17].  It is common to analyze overlapping frames, which can be done by 

setting a frame advance.  To analyze a signal using short time Fourier analysis, the window 

function is iteratively applied to the signal, the first frame starting at the beginning of the 

signal and each successive frame starting at the current frame plus the frame advance.   

The exact definition of the Fourier Transform requires knowledge of the signal for 

infinite time.  Although the data in each frame is finite, the Fourier transform treats the data 

as though it were one period of a continuous periodic signal.  The short-time discrete Fourier 

transform of a signal whose period is not equal to the frame length contains frequency 

components not present in the original signal.  This occurrence is called spectral leakage and 

is a result of the discontinuity of the signal when the frame is repeated periodically.  One way 

to reduce spectral leakage is to apply a window function such as a Hamming window prior to 

transforming the signal.  Once the frequency spectrum at each frame is calculated, the results 

can be displayed in a format such as a spectrogram.  Spectrograms allow one to visualize the 

dynamics of energy distribution changes over time.  In a spectrogram, time is shown on the 

horizontal axis and frequency is shown on the vertical axis.  Areas of higher energy are 

shown as darker or are otherwise distinguished by color intensity.  Figure 2.1 is an example 

of a wolf howl spectrogram. 
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Figure 2.1 Wolf howl spectrogram. 

 

2.2 FEATURE EXTRACTION 
Feature extraction is a term used to describe how audio data is processed before it is 

given to the classification component of a pattern recognition system.  Feature extraction 

provides several benefits.  Typically the amount of data that pattern recognition applications 

are required to process is very large.  As much as hardware has improved in recent years, 

these applications still require a great amount of computational power.  One benefit of 

feature extraction is that it reduces the overall amount of data being processed so that the 

performance in terms of speed is improved.  Another benefit of feature extraction is more 

specific to the goal of pattern recognition applications, which is to be able to distinguish 

between different classes of data.  Ideally, feature extraction enhances the differences 

between examples of different classes, which will result in better accuracy in classification. 
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Filterbanks are often used in feature extraction for audio signals.  The motivation for 

using filterbanks is that it exploits mammals’ inability to distinguish between closely related 

frequencies.  The benefit of using filterbanks is it further reduces the amount of data being 

processed, resulting in faster performance.  They also remove differences that are not readily 

distinguishable by mammalian auditory systems.  Speech processing applications commonly 

use Mel filters, which are derived from the way humans perceive sounds with different 

frequencies [17].  For studies that involve nonhuman vocalizations, more neutral filters such 

as linearly spaced filters can be used effectively [7].  In feature extraction, the filter is applied 

to each frame's frequency spectrum. 

Recall that we can model mammal call production as a source-filter model, where the 

source is the outflow of air from the lungs through the vocal folds and the filter is the vocal 

tract.  Given this source-filter model, it would be helpful to separate the source from the filter 

with the idea that the vocal tract configuration is the primary factor in determining the 

characteristics of the sound that is produced.  Cepstral processing allows us to do this by 

employing the property that the convolution of two signals is equal to the sum of the signals’ 

cepstrums.  In cepstral processing, the “cepstrum” is defined as the inverse Fourier transform 

of the log magnitude spectrum [18].   Although we could use the inverse Fourier transform to 

compute the cepstrum, another discrete-frequency transform called the discrete cosine 

transform (DCT) is commonly used.  The following equation shows how to calculate the real 

cepstrum of a signal using the DCT. 

  0))((][][
1

0
2

1 NkN/nkcosnXkC
N

n

≤≤+π=∑
−

=

 (2) 

In human speech processing applications it is common to use only the first 12 

coefficients of the cepstrum [17].  We found that by increasing the number of cepstral 
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coefficients to 18 resulted in better performance.  A common technique to improve the error 

rate is to include the first and second derivatives of the cepstral coefficients.  The first 18 

coefficients with the first and second derivatives results in a 54 dimensional feature vector.   

Another technique that can improve error rate is cepstral mean normalization.  The 

purpose for using cepstral mean normalization is to increase robustness in varying 

environmental conditions [17].  In cepstral mean normalization, first the cepstrum is 

calculated from a signal by short time Fourier analysis.  Next the mean of the cepstrum 

vectors is calculated and then subtracted from each vector to so that they are normalized. 

2.3 BAYES DECISION RULE 
Our classification system makes use of Bayes decision rule, also known as the 

maximum a posteriori probability (MAP) decision rule.  Suppose models Ф1, Ф2, … ФS 

each represent a different class.  The problem we want to solve is to choose one class that 

best represents an observation.  If we have no knowledge about the observation, then we may 

use the prior probability, which is simply to choose the class with the highest probability.  

The prior probability of a model Ф is written p(Ф).  The term "prior" is used because it is 

before we know about the observation.  If we then have an observation sequence x, we want 

to choose one of these classes that is mostly likely given that observation.  This is the 

posterior probability of a model Ф given x, and is written as p(Ф | x).  This is difficult to 

calculate directly, so we can rewrite this using Bayes rule as shown. 

 )(
)( )(  = ) | x

ΦΦx
xΦ p

p|p
(p  (3) 

Note that p(x) remains constant for all classes, so we rewrite the above equation as 

p(x|Ф)p(Ф).  We calculate this for each model Фn and then choose the model that gives the 
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maximum probability.  Bayes decision rule minimizes the overall risk with respect to a zero-

one loss function. 

2.4 HIDDEN MARKOV MODELS 
Hidden Markov models are one of several techniques commonly used in pattern 

recognition applications.  While the basic theory of hidden Markov models was published in 

the late 1960’s, interest in HMMs has increased over the last couple of decades.  Here we 

will describe the basic theory of HMMs. 

Signal models can be separated into two broad categories: deterministic and 

stochastic.  Deterministic models generally use some known properties of the given signal, 

while stochastic models, including hidden Markov models, seek to characterize a signal 

based on some unknown random process or processes [19]. 

Hidden Markov models are an extension of the Markov chain, so we first give a brief 

definition of a Markov chain.  Consider a chain of random events.  These events could be 

completely independent of each other or have dependencies on other events.  In a Markov 

chain, each event is dependent only on the previous event.  In an observable Markov chain, 

events are associated with states, and each state represents a distribution of possible event 

outcomes.  Thus the observable chain of random events is represented by a state sequence 

[19].  Figure 2.2 is a diagram illustrating an observable Markov model with 3 states. 

Note that observable Markov chains have an output probability distribution for each 

state, and the state sequence can be observed.  However, some processes have a state 

sequence that cannot be observed.  By extending the definition of Markov chains to include 

chains where the state sequence is unobservable, we can adequately model those processes.  
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The sequence of state transitions is not known (i.e. "hidden") and also governed by a 

probability distribution.  

 

 

Figure 2.2 Observable Markov model. 

 

To make the definition more concrete, we will describe the parameters that 

characterize a hidden Markov model.  In our description we will use Ф(π, A, B) to denote a 

hidden Markov model.  Given a number of states N, π = { π i}  where 1 ≤  i ≤ N is the 

probability of starting in state i, A = { aij} where 1 ≤  i, j ≤ N is the probability of a transition 

from state i to state j, and B = { bi(x) } where 1 ≤  i ≤ N is the probability of seeing 

observation x while in state i.  Note that although the initial probabilities π and the state 

transition probabilities A are separate parameters, together they characterize the state 

sequence.  Other required notation includes X = {X 1, X2, ..., XT } which represents an 

observation sequence from time 1 to time T governed by the parameter B, and S = {S1, S2, ..., 

SN } which represents a state sequence governed by the parameter A.  The state distributions 

B can either by discrete or continuous, and we will use a Gaussian mixture model (GMM) to 

represent the distribution of our continuous feature vectors.  A Gaussian mixture model is a 

probability distribution that includes a number of component Gaussian mixtures, each with a 
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mixture weight.  These models are useful for representing arbitrary distributions where a 

single distribution does not adequately represent the underlying data.  A multivariate GMM 

is defined as: 

 ∑
=

=
M

k
jkjkjkj ,Ncb

1

)()( Σµxx  ,  (4) 

where ),(N jkjk Σµx  ,  represents a Gaussian density function with mean vector µjk and 

covariance matrix Σjk .  cjk  is the weight for the kth mixture associated with state j.  The sum 

of the M mixture weights, ∑
=

M

k
jkc

1

, must be 1 to ensure that bj is a distribution. 

The number of states per model is implicit in the hidden Markov model definition.    

Rabiner [19] describes two methods commonly used to select the number of states for a 

given model.  One method bases the number of states on the number of distinguishable 

sounds within the signal, while the second method uses the average length of time of the 

observation sequences to determine the number of states.  When Gaussian mixture models 

are used for the output distributions, the number of mixtures must be chosen as well. 

There are three common problems associated with hidden Markov models.  The first 

problem is to determine the probability of a sequence of observations with respect to a 

model.  To find the probability of the observation sequence over a single state sequence path, 

we compute the product of the initial state probability, the transition probabilities for the 

path's state sequence, and the corresponding output probability for each state in the path.  The 

equation for a state sequence probability is: 

 P(S|Ф) = πs1  as1s2 as2s3 ... as (T-1)sT (5) 

Using the same state sequence S, the equation for the calculating the observation sequence 

probability is: 
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 P(X|S,Ф) = bs1 (X1) bs2 (X2) ... bsT (XT) (6) 

Combining the above equations as a joint probability gives us the probability for a specific 

path, as shown here. 

 P(X|S,Ф) = π s1 as1s2 as2s3 ... as(T-1)sT  bs1 (X1) bs2 (X2) ... bsT (XT) (7) 

As each path is a separate event and the state sequence is unknown, the probability of 

an observation sequence X is the sum of the probabilities of all possible paths through the 

model.  Summing over all state sequences S gives us the probability for this observation 

given the model. 

 P(X|Ф) = ∑
Sall

 π s1 as1s2 as2s3 ... as(T-1)sT  bs1 (X1) bs2 (X2) ... bsT (XT)  (8) 

A practical problem arises here in that this computation has exponential complexity 

because of the number of states and observation sequence length.  We can use dynamic 

programming principles to solve this problem.  We will show a simple illustrative example, 

and then extend that example to our actual solution.  Figure 2.3 shows two examples of 

partial paths through a 3-state hidden Markov model.  Keep in mind that many other paths 

through this model are possible.  The illustration shows that for these two particular paths, 

the computations from time 1 to time 3 are identical.  Rather than recomputing these values 

for each path, we can compute this value once and then save our computation for reuse with 

other paths.  This idea of storing and reusing partial computations is common to dynamic 

programming and can efficiently solve the exponential complexity problem. 

We can extend this idea to store partial results at each time for all possible paths 

through each state.  This method is known as the forward algorithm.  Here we introduce a 

measure called the forward probability denoted αt(i), which is the probability of being in state 

i at time t given the model and observation sequence.  The first step of the forward algorithm 
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is to calculate the forward probability of starting in each state and observing X1 in that state, 

as shown in the following equation. 

 α1(i) = π i bi (X1)      1 ≤  i ≤ N (9) 

The next step is to iteratively evaluate the forward probability at time t = t + 1 until the final 

time T is reached for each state, as shown in this equation. 

  αt(j) = )(
1

1 tj

N

i
ijt Xba)i( 






 α∑
=

−       2 ≤  t ≤ T ; 1 ≤  j ≤ N (10) 

The final step is to sum the forward probabilities of all states in the final time T , as shown in 

this equation.  

 P(X|Ф) = ∑
=

α
N

i
T )i(

1

 (11) 

Ultimately, this algorithm sums the probability of the observation sequence over all paths.   

 

 

Figure 2.3 Partial path example. 

 

Now suppose we want to determine which path within the given model is most likely 

to produce the observation sequence.  We can solve this problem by using the Viterbi 

algorithm which is similar to the forward algorithm except that rather than finding the sum of 

state 1 

state 2 

state 3 

t=1 t=4 t=2 t=3 

state 1 

state 2 

state 3 

t=1 t=4 t=2 t=3 

Partial path 1 Partial path 2 
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all state sequence path probabilities, the goal is to find the single state sequence that yields 

the highest probability.  Here we introduce a probability measure given by the best-path 

probability Vt(i) which is the probability of the most likely state sequence at time t ending in 

state i.  This measure only gives the probability of this path, not the path itself.  To keep track 

of the path we have a separate variable Bt(i) that stores the state that maximizes the 

probability of the path at time t in state i.  For the first step in the Viterbi algorithm we 

calculate the best-path probability V1(i) at time t=1: 

 V1(i) = π i bi (X1)          1 ≤  i ≤ N (12) 

At time 1 there is no previous state, so B1(i) = 0. 

The next step in the Viterbi algorithm is to calculate the best-path probability for each 

observation, and the state at each time that gives the highest probability is stored so that the 

state sequence can be reconstructed.  This is shown in the following equations. 

 Vt(j) = 
1

1
max ( ) ( )t ij j t

i N
V i a b X−≤ ≤

      2 ≤  t ≤ T;  1 ≤  j ≤ N (13) 

 Bt(j) = 
1

1
arg max ( )t ij

i N

V i a−
≤ ≤

        2 ≤ t ≤ T;  1 ≤ j ≤ N (14) 

Finally, the final best-path probability and state are chosen.  The maximum 

probability is equal to [ ])i(Vmax T
Ni≤≤1

.  The final state denoted sT is equal to [ ])i(Vmaxarg T
Ni≤≤1

. 

To reconstruct the best state sequence we can backtrack through the best-path states 

that we saved in Bt(i) as shown here. 

 st = Bt+1(st+1)        t=T-1, T-2, ... 1 (15) 

These values are used to give the best state sequence S = (s1, s2, ... sT). 

The Viterbi algorithm is used to calculate the probabilities of observation sequences 

for each model in a pattern recognition application.  It is interesting that the probabilities 
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calculated in the Viterbi algorithm rarely differ significantly from those given by the forward 

algorithm.  This is because of all the possible paths, the ones that are less likely do not 

contribute much to the overall probability of the observation sequence with respect to a 

model.   

An implementation issue arises with both decoding algorithms.  Consider the number 

of factors in the equations above, and that many of the factors are probabilities which means 

they are between 0 and 1.  These calculations could very quickly result in an arithmetic 

underflow.  For the Viterbi algorithm, we can perform these calculations using log 

probabilities and replacing the multiplication operations by addition.  This is not easily done 

in the forward algorithm, in which case it is possible to use an algorithm to scale the 

probabilities such that they remain within the dynamic range of the hardware (see [17] for 

details). 

The third problem is an optimization problem.  Given a model and an observation 

sequence, we may want to adjust the parameters of the model to maximize the probability 

that the model generated the observation sequence.  To solve this problem we can use the 

Baum-Welch algorithm.  This method is sometimes called the forward-backward algorithm 

and is an instance of the Expectation-Maximization (EM) Algorithm.   

The basic idea behind the Baum-Welch algorithm is to iteratively calculate the 

expected probabilities related to the training data and current model estimates, and then use a 

maximum likelihood estimator to find better parameters for the given model.  With hidden 

Markov models, the missing information that we want to estimate is the hidden state 

sequence.  When Gaussian mixture models are used to model the output, we also want to 

estimate the hidden mixture weights.  The expectation step calculates estimates for the 
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hidden information, and then the maximization step determines new parameters based on 

those estimates.  The expectation and maximization steps are repeated until the model 

parameters converge. 

The first step in the Baum-Welch algorithm is to choose estimates for the initial 

model parameters.  For the initial state distribution π and the transition probability 

distribution A, using either random or uniform estimates is almost always sufficient [19].  It 

is also common to start in state 1, giving an initial state distribution π = {π1 = 1, π2 … πN = 0} 

[17].  We will assume this initial state distribution and will discuss the Baum-Welch 

algorithm excluding π from the re-estimation procedures. 

Good initial estimates are essential for the output probability distribution, particularly 

when the output is a continuous distribution.  When Gaussian mixture models are used, one 

method for selecting initial estimates is to compute the grand mean and variance for all of the 

observations, and assume a single mixture.  These GMM parameters are assigned to each 

state.  After a few iterations of the EM algorithm the GMM parameters converge, at which 

time the mixtures are split.  This process repeats until the number of desired mixtures is 

reached. 

Now that we have initial parameter estimates, we perform the expectation step.  We 

need to define the backward probability measure denoted βt(i), which gives the probability of 

being in state i at time t and generating the partial observation sequence from time t+1  to T.  

The backward probability calculation is shown in the following equations. 

 βT(i) =1 / N        1 ≤  i ≤ N (16) 

 βt(i) = ∑
=

++ +
N

j
ttjij )j(β)X(ba

1
11 1         t=T-1, T-2, ... 1;   1 ≤  i ≤ N (17) 
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For reestimating the transition probabilities, it would be useful to determine the 

probability of specific state transitions at specific times, given the observation and model.  

This calculation includes all paths going into a specific state i at time t, moving from state i 

to state j, observing Xt, and then all paths from state j to the end of the model.  We already 

have the forward probability αt-1(i) to calculate the probability of all paths going into state i at 

time t-1.  The transition probability aij gives the probability of the transition from state i to 

state j.  The probability of the observation Xt is given by bj(Xt).  The remaining piece is the 

backward probability βt(j) which gives the probability of being in state j at time t and 

generating the partial observation sequence from time t  to T.  We are essentially constraining 

the path probability to a specific state transition at a specific time given the observation 

sequence and model, as illustrated in figure 2.4. 

 

Figure 2.4 Constrained path probability. 

 

This probability measure is denoted γt(i, j), which gives the probability of a state 

transition from state i to j at time t.  The equation for γt(i, j) is: 

From [17] 
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 γt(i, j) = 

∑
=

−
N

k
T

ttjijt

)k(α

)j(β)X(ba)i(α

1

1         1 ≤ i, j ≤ N  (18) 

As we mentioned, the values for γt(i, j)  will be used to reestimate the transition 

probabilities.  We will use another calculation, ζt.(j,k), to reestimate the output probabilities.  

Note that this calculation applies specifically to multivariate Gaussian mixture density 

functions.  The ζ calculation is similar to the constrained path probability γ, but instead of a 

specific state transition at a specific time we want to find the probability of a specific mixture 

and state at a specific time.   The probability measure ζt.(j,k) represents the probability of the 

observation in state j and mixture k at time t given the observation and the model.  As in the 

equation for γt(i, j), we use the forward probability αt-1(i), the transition probability aij, the 

output probability bj(Xt), and the backward probability βt(j).  The new component is cjk which 

gives the mixture weight for state j and mixture k.  The following equation gives the formal 

definition of ζt.(j,k). 

 

∑

∑

=

=
−

=ζ
N

i
T

N

i
ttjkjkijt

t

)i(α

jβ)(bca)i(α

)k,j(

1

1
1 )(x

 (19) 

In the expectation step we calculate the  γt(i, j), and ζt.(j,k) which give us new values 

for the next maximization step.   

In the maximization step, we maximize the model parameters A and B by applying 

reestimation equations to each parameter separately.  First we define the reestimation 

equation for A.  For each aij  we calculate the number of transitions from a state i to state j, 

relative to all transitions from state i.  The re-estimation equation for the state transitions is: 
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The purpose of using this equation is to find the percentage of each specific state 

transition i to j relative to all transitions out of state i, given our observation and model.  This 

calculation translates to the new estimate for the transition probability. 

Next we define the reestimation equations for B which include reestimations of the 

mean, the covariance matrix, and the mixture weights.  We have defined ζt.(j,k) as the 

probability of being in a particular mixture and state at a specific time, given the observation 

and model.  We incorporate this value into the calculations for the new GMM parameters. 

The mean is calculated by essentially weighting each observation by its contribution to the 

given state and mixture before finding the observation mean.  Similarly, the covariance 

parameter is calculated by using the weighted covariance for each observation and then 

finding the overall covariance.  Using ζt.(j,k) for time t, state j, and mixture k we have the 

following reestimation equation for the GMM mean and covariance. 
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The mixture weights parameter is calculated by basically finding the contribution of 

the observation within the specific state and mixture to the all mixtures within that state.  The 

reestimation equation for the mixture weights is defined by: 



 

 

23 

 

∑∑

∑

==

=

ζ

ζ
=

M

k
t

T

t

T

t
t

jk

)k,j(

)k,j(
ĉ
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The reestimation equations give the new model parameters that we will use in the 

next expectation step.  We repeat these steps until the parameters converge.  Each iteration of 

the EM algorithm is guaranteed to produce a model whose probability with respect to the 

training data is greater than or equal to the previous iteration [19].  Although there are no 

known proofs of the rate of convergence, convergence is typically fast requiring no more 

than 5 to 15 iterations. 

2.5 SYSTEM OVERVIEW 
This section gives a brief overview of the system.  Details of each component will be 

addressed later.  Our system is a distributed processing system that utilizes the NSF funded 

High Performance Wireless Research and Education Network (HPWREN), a high-speed 

wireless network [20].  HPWREN provides wireless internet access to a variety of projects 

that require network connectivity in remote areas throughout San Diego, Riverside, and 

Imperial counties.  The HPWREN infrastructure provides the network connection between 

the California Wolf Center and the Speech Processing lab at SDSU.  The network topology 

of HPWREN is shown in figure 2.5. 

The distributed system can be divided into two main parts: data acquisition and 

classification.  The data acquisition is done at the California Wolf Center using a remote 

sensor that is a node on HPWREN.  This sensor is an embedded system with an attached 

microphone that is used to record audio data.  Rather than transmitting all of the recorded 

data, an event activity detector identifies audio segments of interest and then transmits only 
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Figure 2.5 HPWREN network topology. 

 

those segments to the SDSU processing lab, thereby conserving network bandwidth. 

The classification part of the distributed system is done at the SDSU processing lab.  

Once the output from the remote sensor is transmitted, the classification component 

processes the data to prepare it for classification and then classifies the data using pre-trained 

hidden Markov models.  Figure 2.6 is an illustration showing the distributed system and 

where each processing step occurs. 
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Figure 2.6 Distributed component tasks. 

 

2.6 POPULATION OR SAMPLE 
The California Wolf Center, located in Julian, California, is an education and 

conservation center focusing on the North American Gray Wolf.  There are two subspecies of 

the Gray Wolf at the California Wolf Center – the Alaskan Gray Wolf and the Mexican 

Wolf.  Currently, the Wolf Center has 28 total wolves.  During most of the recordings there 

were 29 wolves.  Of those, 17 are Alaskan wolves and 11 are Mexican wolves.  The Wolf 

Center has six different enclosures separating the animals into individual packs.   Two 

enclosures are for the Alaskan wolves, and four are for the Mexican wolves.  The wolves in 

an individual enclosure constitute a pack.  The four Mexican wolf packs have 4, 15, 2, and 2 

wolves.  The two Alaskan wolf packs have 15 and 2 wolves.  The largest Alaskan wolf pack 

is most frequently exposed to people through educational programs and tours.  The packs are 

labeled according to their species, A for Alaskan and M for Mexican, and by the enclosure 

number.  Table 2.1 shows the age and gender of the distribution of wolves. 
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Table 2.1 Wolf Age and Gender Distribution 

Pack Age and Gender 

A1 5 females, age ranging from 2 years old to 16 years old.  10 males, age ranging from 
2 years old to 16 years old 

A2 1 female age 11 years old and 1 male age 12 years old 

M1 1 female age 12 years old and 1 male age 12 years old 

M2 1 female age 5 years old and 1 male age 5 years old 

M3 1 male age 12 years old and 2 females age 7 years old 

M4 4 females age 3 years old 

 

2.7 TREATMENT 

2.7.1 Viper 
The distributed processing system begins with recording at the California Wolf 

Center.  The remote sensor at the California Wolf Center is an Arcom Viper running 

embedded Linux.  It is a low-power single board computer with a 400 MHz ARM-compliant 

XScale RISC processor.  It has 64 MB of memory, 1 GB flash RAM storage, 10/100baseTx 

Ethernet support, and other peripheral support including on board audio [21].  The sensor has 

an attached Labtec model Verse 524 Desktop microphone.  It is enclosed in a weather-

resilient container and is directly connected to the HPWREN network.  Figure 2.7 shows 

photos of the remote sensor.  The left picture shows the closed weather-proof enclosure.  The 

right picture shows the remote sensor within the enclosure and a laptop attached temporarily 

for testing. 

At the wolf center, the sensor is centrally located between the enclosures to maximize 

the number of wolf calls that are recorded.  Of course when the sensor is recording, it records 

any sounds that occur, not just wolf calls.  Other incidental sounds include birds and 

occasional airplanes.  The sensor’s central location sometimes results in the undesired effect 
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Figure 2.7 Remote sensor at the California Wolf Center. 

of recording a lot of wind noise that interferes with the wolf vocalizations.   We have a wind 

shield on the microphone constructed of a wire cage surrounded by fake fur, which helps to 

reduce the wind noise but does not eliminate it. 

2.7.2 Recording 
The sensor is configured with an open source software utility called bplay/brec [22] 

to do the recording.  The recording can either be started manually using HPWREN 

connectivity for testing and development, or it can be configured to run automatically when 

the classification system is running.  We record the audio data at 16000 Hz for the 

classification system.  Some data recorded earlier used as training data was recorded at 

44100 Hz.     

2.7.3 Endpoint Detection 
Audio files can be substantially large, which takes longer both in processing and in 

network transmission.  It would be advantageous to distinguish sounds of interest (ideally, 

wolf calls) from background noise.  We do this with an endpoint detector using signal 

processing techniques.  The endpoint detector identifies segments within the recorded audio 
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stream where signals are found.  Each detected segment is extracted from the original 

recorded file and transmitted across HPWREN to the Speech Processing lab at SDSU.  

Detecting the segments of interest and discarding the background noise data significantly 

reduces the amount of data being transmitted over the network. 

Our endpoint detector is adapted from a joint project between Scripps Institution of 

Oceanography and SDSU.  This endpoint detector is rule-based and uses a signal-to-noise 

ratio to designate where the sounds of interest start and stop.  This SNR endpoint detector 

differs from standard rule based endpoint detectors in that it uses the peak frequency energy 

rather than the overall energy to determine when the threshold is reached.   

The basic algorithm of the endpointer is to process the audio data stream by using 

short time Fourier analysis.  We use 16 millisecond frames with a Hamming window, 1% 

frame overlap, and a 256 point Fourier transform to optimize for speed.  Our signal-to-noise 

ratio threshold is 16 dB.  We limit our analysis to a call bandwidth from 200 to 3500 Hz, 

which is where most of the wolf calls occur.  The noise is calculated by averaging the energy 

of each frame within the specified call bandwidth over a 30 second moving window.   

The endpoint detector moves forward through the audio data, calculating the noise 

within the call bandwidth.  The endpoint detector then calculates the amount of energy within 

the same bandwidth at each frame and compares that with the noise.  If the difference is 

above the threshold, the endpoint detector designates that as the start of a signal.  The 

endpoint detector continues to move through the audio data, comparing each frame with the 

noise.  When the energy falls below the SNR threshold, that designates the end of the signal.  

Detections that are shorter than .25 seconds are discarded.  Remaining detections are padded 

by .15 seconds on either end, and then detections that are less than .15 seconds apart are 
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combined into a single detection.  We extract these detected audio segments and 

automatically transmit them across the network from the remote sensor to the SDSU 

processing lab using the secure shell (SSH) protocol defined by RFC 4251 [23]. 

 

2.8 DATA ANALYSIS PROCEDURES 

2.8.1 Feature Extraction 
After we have the extracted audio detections at the SDSU processing lab, we perform 

feature extraction to obtain feature vector data which is the basis for our classification 

system.  As was previously discussed, feature extraction is a method that extracts information 

to aid in classification while reducing the size of the data used in processing.  A software 

package that we use extensively throughout the feature extraction and classification is HTK 

(Hidden Markov Model Toolkit) [24], an open source software toolkit that is used to build 

and manipulate hidden Markov models. 

To perform feature extraction we use a 24 millisecond frame, a 10 millisecond 

advance, and a Hamming window.  We apply a linear filter bank before obtaining the 

cepstrum.  We use 18 cepstral coefficients and then include the first and second derivatives to 

improve classifier performance.  We also use cepstral mean normalization to improve 

performance.   

2.8.2 Training 
Training data is required to create hidden Markov models.  Our system is a 

supervised learning system, which means that we use known examples of each class to train 

each of the corresponding models.  We based our list of classes on the literature from 

Schassburger [25] and Goodmann, et al. [12] .  For our training data, we collect examples of 
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each class that we want to be able to identify, and then we manually label each of the 

examples.  Our list of wolf call classes is: howl, duet howl, chorus howl, bark, growl, growl-

bark, whine, and yarl.  A duet howl is two overlapping howls.  A chorus howl is three or 

more wolves howling at once.  A growl-bark is a string of barks in rapid succession that are 

too close together in time to separate into individual barks.  A whine is a repeated sound, 

relatively brief, and falling in pitch.  A yarl is similar to a growl, but have higher frequencies.  

Figure 2.8 shows some examples of spectrograms of wolf call types.   

 

 

Figure 2.8 Spectrograms of wolf calls. 

 

There are other wolf calls in the literature such as squeal and whimper that we 

excluded because we do not have sufficient data to model these call types.  We also include 

two classes that are not wolf calls.  Our recordings frequently include bird calls, and we 

grouped those together into a bird class.  We also include an unknown class, to group 

together sounds that we record but do not specifically identify. 

The process of manually labeling the data consists of listening to a portion of the 

recordings and manually labeling each sound accordingly.  To label our data, we used an 

open source audio utility called Wavesurfer [26].  Wavesurfer is used to open audio files and 

display a graphical representation of the data, such as a spectrogram, while it plays the audio.  

wolf howl wolf bark wolf whine 
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It also allows the listener to save start/stop times with a text label such as 'howl' or 'bark' 

alongside the visual display.   

Having a sufficient number of examples of each class is important to having a good 

pattern recognition system.  We have 11 hours of labeled data.  Table 2.2 shows the number 

of training and test examples we used per class. 

Table 2.2 Number of Examples Per Class 

Class Number of Examples Training Examples  Test Examples 

howl 172 94 78 

duet howl 26 11 15 

chorus howl 39 22 17 

bark 145 88 57 

growl 95 46 49 

growl-bark 91 39 52 

whine 91 88 3 

yarl 34 27 7 

bird 824 443 381 

unknown 172 82 90 

 

After we have our labeled training data, we perform feature extraction on the data to 

obtain the feature vectors that we will use to train the models.  We then apply the Baum-

Welch algorithm described earlier to train a hidden Markov model for each class.  To do this 

we use Python programs to interface with low level HTK utilities.  When the model has been 

created and trained, HTK generates a file known as a model definition file that represents the 

model.  This file contains the model parameters such as the transition probabilities and output 

probabilities that we described earlier in the hidden Markov model overview.   
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Many human speech recognition systems use HMMs that all have the same number 

of states.  The reason for this is that those systems use subword-level training, and the 

subword components are selected based on the number of frequency distribution changes.  In 

our system we use models that each represent an entire call.  Given that some call types are 

typically significantly longer than others, we chose to vary the number of states according the 

class.  As initial estimates, we assigned the number of states as a function of call length.  We 

then varied the number states to find reasonable estimates.  Table 2.3 lists the number of 

states per class. 

Table 2.3 HMM States Per Class 

Class Number of states per class 

howl 30 

chorus howl 40 

bark 10 

growl 20 

whine 15 

yarl 15 

bird 10 

unknown 10 

 

2.8.3 Classification 
Recall that the remote sensor transmits candidate calls in the form of audio segments 

to the SDSU processing lab.  We have a Python script that receives these incoming audio 

segments and processes them one at a time.  The script first performs feature extraction on 

the audio segment as described earlier, and then the Viterbi likelihood for each class is 

computed.  The call to the low level HTK interface requires parameters such as the list of 
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classes/models, the HTK-generated model definitions, and a grammar.  The grammar 

specifies sequences of permissible calls.  We assume that each segment contains a single one 

or more calls from the ethogram specified in section 2.5.2.  The MAP decision rule is used to 

decide the class label.  HTK generates a recognition file showing how the segment was 

classified. 
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CHAPTER 3 

RESULTS AND DISCUSSION 

The classifier was tested on the dataset described in the previous chapter.  

Experiments were conducted both using the manually identified segmentations of calls, and a 

segmentation produced by the automated call detection routines.   

The overall accuracy of our classifier on a corpus of 749 manually identified test calls 

is approximately 75%.  Table 3.1 is a confusion matrix showing the accuracy per individual 

call type.  In this table, the column labeled "% correct" is the percentage of the given call 

type that was correctly labeled.  The column labeled "% error" is the percentage of 

incorrectly classified calls of the given call type relative to the total number of calls. 

 

Table 3.1 Classification Results of Manually Identified Data 

 

We used 32-mixture GMMs to represent components of each call type.  Most calls 

were represented as a single component with the exception of growl-barks and howl duets, 
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which consisted of two more consecutive barks or howls respectively.  Our HMMs have a 

number of states as a function of the length of the call (see Table 3). 

Wolf vocalizations vary in loudness.  For example, it is generally accepted that wolf 

howls are intended for communication over distances [25, 27] and therefore are required to 

be louder than other types of vocalizations.  Growls on the other hand are intended to 

communicate with wolves that are in close proximity.  The result of this is that a sensor that 

is well-suited for recording howls may not record other types of vocalizations as well if it is 

not in close proximity to the animals.  The sensor used to collect the corpus is located far 

from the feeding area where the majority of growls, whines, and yarls are produced.  For 

these calls types, collecting more examples with a sensor that is located closer to the wolves 

may be beneficial.  A second sensor has recently been added in proximity to the area in 

which packs A-1 and M-4 are fed, and we are in the process of collecting additional data for 

these call types. 

A fairly significant number of growl-barks are being misclassified as barks.  The 

structure of a growl-bark is a string of barks so closely timed such that it may be difficult for 

humans to identify the individual barks within the call.  These misclassifications in our 

system suggest that the structure of the growl-bark components are in fact very similar to an 

individual bark.   

A similar misclassification occurs with howls.  The three howl call types: howl, duet 

howl, and chorus howl, all have similar components.  The misclassifications of these call 

types are most frequently one of the other howl call types. 



 

 

36 

CHAPTER 4 

SUMMARY, CONCLUSIONS, AND 

RECOMMENDATIONS 

We have implemented a distributed pattern recognition system using hidden Markov 

models.  Our system performs classification of calls produced by wolves at a remote 

conservation, education, and breeding facility.  The remote sensor records audio data, 

processes it with a signal-to-noise ratio endpoint detector, and then automatically transmits 

the data to the SDSU Speech Processing lab where we perform the classification.  Under 

tested conditions with low wind noise, our system performs with an accuracy rate of 75%.   

Our project did not focus on hardware optimization, such as selection of sensors or 

microphones, which would be an opportunity for research.  Recordings taken over a longer 

period of time could potentially result in a more robust system.  Our data was solely from one 

physical and geographical location. 

An ongoing challenge with our project has been handling wind noise that appears in 

some of the recordings.  Based on data obtained from a nearby weather station [27] we 

observed a positive correlation between a southwest wind direction and the amount of wind 

noise recorded.  Therefore, one possible solution for handling the wind noise would be to 

automatically retrieve the wind direction and temporarily stop recording.  When the wind 

direction changes then recording could resume. 

There are a number of possibilities for future research with regard to our project.  

While our current system is based on recordings taken primarily from one sensor, the use of 
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multiple microphones or microphone arrays would provide an opportunity for research in the 

areas of denoising, and localizing the signal.  Pairing the audio data with visual data may 

provide more complete information about the wolves, which could assist in educational 

programs or wolf caretaking.  Studies could be done involving the seasonal or daily 

behavioral patterns of wolves.  A possible area of research is to investigate how wolves are 

impacted by the presence of anthropogenic sounds. 

In recent years there has been increasing interest in wolves in the wild.  Boitani [28] 

describes the dramatic changes in wolf populations throughout history, including the recent 

history of the United States.  As Europeans settled in North America, wolves were actively 

pursued with the intent of extermination.  By 1930, the wolf population had essentially 

disappeared from the continental United States.  Fortunately, views have begun to change 

and in the 1970's wolves were given protection under the Endangered Species Act.  In 1995 

wolves were reintroduced into Yellowstone National Park and central Idaho. 

Although wolves are still protected in the United States, some populations' 

designations have been recently downlisted from endangered to threatened.  The presence of 

wolves remains controversial.  Past and present research continues to evaluate the impact of 

wolves with regard to issues such as livestock depredation, predator-prey relationships and 

restoration of wolf populations.   

Passive acoustic monitoring has the potential to support such research.  For example, 

a study by McDonald and Fox [29] used long-term passive acoustic monitoring to estimate 

the fin whale population.  Applying passive acoustic monitoring to wolf populations in the 

wild could provide researchers with useful information that could further conservation and 

education efforts. 
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There is an increasing amount of research with the goal of understanding wildlife found 
in our environment.  Observing the behavior of a species, including vocalizations, is fundamental 
to this goal.  Researchers in the biological sciences have traditionally had to gather their 
observations manually, with a great deal of labor-intensive tasks.  It would be beneficial to 
design and build a system that automatically gathers and analyzes this behavioral data. 

This thesis presents such a system.  Our system starts with a remote sensor that uses 
digital signal processing to automate data acquisition.  The system then sends the acquired data 
to a remote lab via a high-speed wireless network for processing.  Once the data is in the lab, our 
system classifies the data using hidden Markov models.  The goals of this research are to build 
this system with the best possible level of performance, and to answer whether a pattern 
recognition system based on hidden Markov models can classify wolf call types with a 
reasonable level of success. 

 


