

## Resource Management of Heterogeneous Wireless Sensor Networks

Edoardo Regini Gaurav Dhiman

Advisor: Tajana Simunic Rosing





Iacobs Schoo

### **HPWREN - three tier network**





#### Wireless MESH

- QoS routing
- Fast wireless connectivity

#### Sensor Cluster Heads

- Key issue:
  - Delivering good QoS
  - With long battery lifetime
- Use faster radio to support QoS requirements

#### Sensor Network

- QoS: not considered in traditional sensor net research
- Battery lifetime

# **Wireless MESH: QoS Routing**



Quality of Service: guaranteeing router resources to a data flow in accordance with its priority

High Priority

Priority Bulk



Standard



### **QoS Guarantees**



Successful configuration and experimentation with Cisco 3560 for QoS



### QoS Scheduling & Routing for Sensor Node Cluster Heads

**Objective:** 

Design an adaptive, distributed and low power QoS scheduling and routing methodology

#### Why?

Lower cost to deploy: smaller batteries & solar cells

#### Main Challenges:

Understand and characterize the incoming traffic Devise a good scheduling & routing model: routing backbone – good QoS scheduling – low power Implement and simulate on NS2 simulator Deploy in SMER and within HPWREN



# Sensor cluster heads: scheduling for low power



- Distributed
  - Requires only the knowledge of the *two-hop* neighborhood



# Sensor cluster heads: scheduling for low power



- Distributed
  - Requires only the knowledge of the *two-hop* neighborhood



# Sensor cluster heads: scheduling for low power



- Distributed
  - Requires only the knowledge of the *two-hop* neighborhood





• *Energy aware* selection of nodes into the backbone using:

- Residual Energy
- *Utility*: a measure of how many neighbors the node can connect
- Requires knowledge of the neighbors within two hops

## Preliminary results: route selection & energy savings

|             | 802.11 | Our<br>Solution |
|-------------|--------|-----------------|
| Area        | # hops | # hops          |
| 500mx500m   | 2.5    | 3.0             |
| 750mx750m   | 3.9    | 4.8             |
| 1000mx1000m | 5.4    | 6.7             |
| 1250mx1250m | 7.2    | 8.2             |

Routing uses geographic greedy forwarding

| Significant energy |
|--------------------|
| savings possible   |

| Area (m)  | % Coord | % Sched | % Sleep |
|-----------|---------|---------|---------|
| 500×500   | 21      | 22      | 57      |
| 750x750   | 28      | 22      | 50      |
| 1000×1000 | 34      | 25      | 41      |
| 1250x1250 | 39      | 29      | 32      |

# **Future Work**

- Implementation and measurements
- Deployment and testing under real traffic conditions
- Study adaptation to application specific requirements

### **Publications to date**

- Regini, E., Lim, D. and Rosing, T.S. "Scheduling Above MAC to Maximize battery Lifetime and Throughput in WLANs". IASTED 2008
- Dhiman, G. and Rosing, T. S. *"System Level Power Management Using Online Learning"*. Submitted to IEEE TCAD
- Dhiman, G. and Rosing, T. S. *"Dynamic voltage frequency scaling for multi-tasking systems using online learning"*. ISLPED 2007
- Dhiman, G. and Rosing, T. S. *"Dynamic power management using machine learning".* ICCAD 2006.
- D. Lim, J. Shim, T. Simunic Rosing, T. Javidi, "Scheduling data delivery in heterogeneous wireless sensor networks," ISM'06.



# Sensor node cluster heads: Routing and Scheduling



| Routing Layer | Routing                 |           |  |
|---------------|-------------------------|-----------|--|
|               | Backbone<br>Maintenance | Scheduler |  |
| MAC/PHY Layer | 802.11                  |           |  |

The routing layer knows if a neighbors is:

- Part of the backbone
- Active/sleeping

# **Preliminary Results: Setup**

- NS-2 network simulator
- Different topologies:
  - 500X500m, 750X750m, 1000X1000m, 1250x1250m
- Routing layer Greedy geographic forwarding:
  - 1. Fw to neighbor in the backbone closest to the destination
  - 2. Fw to active neighbor
  - 3. Buffer the packet