
UNIVERSITY OF CALIFORNIA, SAN DIEGO

Resource Management in Heterogeneous Wireless Sensor Networks

A thesis submitted in partial satisfaction of the requirements for the degree
Master of Science

in

Computer Science

by

Edoardo Regini

Committee in charge:

Professor Tajana Simunic Rosing, Chair
Professor Ryan Kastner
Professor William Griswold

2009

Copyright

Edoardo Regini, 2009

All rights reserved.

The thesis of Edoardo Regini is approved and it is

acceptable in quality and form for publication on mi-

crofilm and electronically:

Chair

University of California, San Diego

2009

iii

DEDICATION

I dedicate this thesis to my family. In particular to my parents Vanni e Mally who have

always been supportive and made countless sacrifices for me. Both this thesis and the

completion of my graduate degree wouldn’t have been feasible without their devotion.

They have always been present in the moments of need. Despite the miles that separate

us I felt they were close to me and that gave me strength.

iv

TABLE OF CONTENTS

Signature Page . iii

Dedication . iv

Table of Contents . v

List of Figures . vi

List of Tables . vii

Acknowledgements . viii

Abstract of the Thesis . ix

Chapter 1. Introduction . 1

Chapter 2. Related Work . 9

Chapter 3. Scheduling Algorithm . 14
1. The scheduling algorithm . 14
2. Simulation Results . 19

A. Results for data traffic collected at HPWREN 20
B. Effect of different scheduling slot sizes 21

3. Measurements . 22
A. Throughput . 23
B. Power consumption . 23
C. Application delay . 26

4. Traffic Prioritization . 27

Chapter 4. Forwarding Backbone . 30
1. The coordinator election process . 32
2. Combining scheduling and forwarding backbone 34

Chapter 5. Results . 35
1. Simulation setup . 35

A. Energy . 37
B. Latency . 39

Chapter 6. Conclusion . 41

References . 43

v

LIST OF FIGURES

Figure 1.1: HPWREN: network topology . 2
Figure 1.2: HPWREN: three layer structure . 3
Figure 1.3: High level overview of the proposed solution 5
Figure 1.4: Overview of the proposed solution . 6

Figure 3.1: Throughput drop as a function of the number of nodes transmitting at
full MAC queues . 15
Figure 3.2: Example of running the scheduling algorithm on node v10 17
Figure 3.3: Hexagonal network topology used in the simulations for the scheduling
algorithm . 20
Figure 3.4: Simulation results of the node-level scheduling algorithm in hexagonal
topology using data collected from HPWREN . 21
Figure 3.5: Simulation results of the node-level scheduling algorithm in hexagonal
topology using different slot sizes . 22
Figure 3.6: Measurement results on aggregate throughput 24
Figure 3.7: Measurement results on the power consumption of the NIC 24
Figure 3.8: Sample measurement of TX-Power technique 25
Figure 3.9: Measurement results on application layer delay 26
Figure 3.10: Example of the WFQ policy implemented at node level 28
Figure 3.11: Measurement results on aggregate throughput 29

Figure 4.1: BcastSlot and BcastPeriod . 32

Figure 5.1: Average per node battery consumption (J) as a function of the S pa-
rameter. 37
Figure 5.2: Average per node battery consumption (J) as a function of the S pa-
rameter, for different slot sizes, 100ms, 200ms and 400ms. 38
Figure 5.3: Average latency (ms) as a function of the S parameter of the algorithm
for different square networks with sides 500m, 750m, 1000m and 1250m 39
Figure 5.4: Forwarding through nodes in PSM vs active nodes, 100ms, 200ms and
400ms. 40

vi

LIST OF TABLES

Table 5.1: Simulation Parameters . 36

vii

ACKNOWLEDGEMENTS

I would first like to thank my advisor, Tajana Simunic Rosing. Her guidance has

been invaluable through all stages of this thesis and my graduate degree. Additionally,

I would like to thank all the current and past members of SEE Lab: Shervin, Jamie, Gi-

acomo, Denis, Joaquin, Gaurav, Ayse, Diana, Priti, Raid, Ben, Carlo, Daeseob, Daniele

and Todor. I have had great times in their company.

Special thanks to the High-Performance Wireless Research and Education Net-

work (HPWREN) for their support. This work has been supported by the HPWREN, the

National Science Foundation, (NSF award numbers 0087344 and 0426879), CNS, Sun

Microsystems, UC Micro and Qualcomm. I also thank Hans-Werner Braun from the

San Diego Supercomputer Center (SDSC) and Pablo Bryant from the San Diego State

University for their help and support for the research on the HPWREN/Scheduling and

Routing project.

viii

ABSTRACT OF THE THESIS

Resource Management in Heterogeneous Wireless Sensor Networks

by

Edoardo Regini

Master of Science in Computer Science

University of California, San Diego, 2009

Professor Tajana Simunic Rosing, Chair

Heterogeneous wireless sensor networks (HWSNs) such as HPWREN have en-

vironmental sensors located in remote and hard-to-reach locations far from the main

high-bandwidth data links. The sensed data needs to be routed through multiple hops

before reaching the backbone. The routing is done by battery-powered nodes using li-

cense free radios such as 802.11. In this context, minimizing energy consumption is

critical to maintaining operational data links.

This thesis presents a novel routing mechanism for HWSNs that achieves large

energy savings while delivering data efficiently throughout the network. This mecha-

nism sits on top of the unmodified MAC layer so that legacy network devices can be

ix

used, and expensive hardware/software modifications are avoided. Thus, our approach

is inexpensive and easily deployable. Our solution includes scheduling and routing al-

gorithms.

The TDMA based scheduling algorithm limits the number of active nodes and

allows a large portion of nodes to sleep thus saving energy. Since the algorithm is

completely distributed and hence minimum (at join time) control packet exchange is

required, nodes in sleep state can switch off the wireless network interface minimizing

power consumption. Simulations and measurements on a testbed network show that

scheduling can achieve as much as 85 % power savings. Furthermore, results show that

by limiting the number of active nodes, contention in the channel decreases and hence

aggregate throughput increases up to 10 %.

Scheduling is combined with the creation of a backbone of nodes in charge of

providing connectivity to the network and delivering data to the proper destinations.

When part of the backbone, a node is required to stay awake continuously for a prede-

fined amount of time. Since it is an energy expensive task, the nodes of the backbone

are dynamically selected so that those nodes that have more energy available are more

likely to become part of the backbone.

Simulations results on different scenarios show that the combined scheduling

and forwarding backbone approach achieves up to 60 % energy savings per battery

operated node and also have better performance when compared to existing techniques.

x

Chapter 1

Introduction

Heterogeneous wireless sensor networks (heterogeneous WSNs) consist of nodes

with different communication, computation and power capabilities. They typically in-

clude a large number of resource-constrained sensor nodes used for data measurements

and fewer resource-rich wireless devices that can be used for data gathering, analysis,

and data relaying. Similar to typical wireless networks, heterogeneous wireless sensor

networks suffer from a limited battery lifetime, excessive contention between wireless

nodes, and insufficient network throughput capacities. In addition, heterogeneous WSN

applications have a variety of quality of service (QoS) requirements depending on the

nature of the application itself.

The differences among nodes typically lead to a multi-level hierarchical organi-

zation of the network in which nodes with increasing capabilities are layered on top of

sensor networks. To make the sensed data available/accessible from remote locations,

traffic from the sensor networks are gathered at cluster heads. A wireless network of

these nodes delivers the data to a backbone of routers with high-bandwidth connections

that provide long distance coverage. Therefore this hierarichical configuration provide

wide coverage in the field and successful transfer of data traffic coming from the sensors.

For the purpose of our work we examine the case of a heterogenous wireless sen-

sor network called HPWREN: High Performance Wireless Research and Educational

1

2

Figure 1.1: HPWREN: network topology

Network [10]. HPWREN is a collaborative cyber infrastructure for environmental re-

search, education, and first responder activities deployed in southern California (cover-

ing nearly 20,000 square miles). Figure 1.1 shows only the fast wireless backbone links

in HPWREN. Project researchers use commercial off-the-shelf components (COTS) to

create access networks to the backbone of HPWREN for numerous sensors placed in

the field. HPWREN is used by many scientific disciplines that monitor and sense the

environment, ranging from environmental sciences, oceanography, and astronomy to

rural education and first responder units. Its sensors come with varying resource re-

quirements, such as large bandwidth requirements of the Palomar observatory, medium

bandwidth but tight real-time traffic deadlines of video cameras tracking wildlife, and

long battery lifetime requirements of small and remotely deployed weather stations.

A heterogeneous wireless sensor network such as HPWREN can be described as

a three-layer structure shown in Figure 1.2. The top layer represents the wireless mesh

backbone of HPWREN shown in Figure 1.1. The links between the backbone nodes

(or parent cluster heads - parent CH) are provided by high-speed wireless directional

antennas that are typically deployed on mountaintops and are accessible to line power.

3

Figure 1.2: HPWREN: three layer structure

In this layer, policy based routing and a level of QoS is provided by the routers.

The bottom layer contains sensors. HPWREN offers a large variety of sensors

with different characteristics and resource requirements that span, for instance, from low

bandwidth but tight real-time traffic deadlines of seismic sensor nodes, to long battery

lifetime requirements of small and remotely deployed weather stations. At this layer a

big issue is the battery lifetime since sensors are typically small devices with very strict

power constraints. There are many algorithms that have been developed to address the

energy efficiency of such sensor networks, and thus this is not the focus of our work.

The middle layer of Figure 1.2 is composed of a wireless network of child cluster

heads (child CHs). Each child CH node gathers the data coming from the underlying

sensors and delivers it to the proper locations in the field. These nodes also frequently

perform data analysis and processing. Data can be routed through other child CHs before

4

reaching the parent CH mesh network (the top layer). The child CHs use license exempt

radios and are typically battery powered. As a result, child CHs need to maximize

their battery lifetime to ensure timely delivery of the sensor data. For example, the

Santa Margarita Ecological Reserve (SMER) uses child CHs with 802.11b connectivity

to collect real time weather data from an array of weather sensors that cover several

different microclimates in SMER.

Commercial wireless LAN (WLAN) such as IEEE 802.11 is a good candidate

for the relay network which connects the cluster head nodes with the routers. 802.11

Wireless LANs (WLANs) are today widely used because of their convenience, cost effi-

ciency and easy deployability. We study the case where WLAN technology is employed

in large-scale wireless networks such as HPWREN where nodes are connected in ad

hoc mode. Given the lack of a network infrastructure, when a source and a destina-

tion node that are far away from each other want to communicate, data is required to

be routed through multiple nodes in the network in order to be delivered. Routing of

packets is made challenging both by the lack of a network infrastructure and because of

limited resources available at the nodes such as energy. Ensuring that the node battery

lifetime is long enough for data collection and delivery to happen in a timely manner is

of critical importance. Typically, the wireless communication device consumes a large

portion of the total energy. In particular the radio power consumption in idle state plays

a significant role in the battery lifetime. In the case of a congested network, the issue

of communication power is also more important since contention causes many packet

collisions and nodes have to perform several packet retransmissions. This results in se-

vere energy consumption and lower network throughput. Furthermore, because some

of the applications have data that urgently need to be delivered (e.g. first responders

in HPWREN), there needs to be a method to trade off energy with QoS. The solution

described in this thesis is designed to address these issues.

The main contributions of this work is an adaptive and energy efficient schedul-

ing and routing backbone creation algorithm capable of saving up to 60% in energy

while ensuring timely data delivery and use of COTS. We focus on optimizing data de-

5

Figure 1.3: High level overview of the proposed solution

livery via wireless network interfaces (NIC) since that accounts for a significant fraction

of the overall energy consumption. In contrast to previous work [3], our algorithm does

not require any changes to the MAC and provides better performance in terms of la-

tency. Figure 1.3 shows the two main components of our solution: the scheduler and the

backbone creation and maintenance algorithm. Next we describe these two components

and how they combine in a unique solution.

The scheduler uses a TDMA based, ditributed algorithm to limit the number of

active nodes in the network. It allows a large portion of nodes to switch off the NIC

and save power. In the example in Figure 1.4, during a generic slot of the TDMA

scheme, the Scheduled-ON nodes are selected by the distributed scheduler to be active,

while the Sleep-OFF nodes save power by switching into a sleep state. The scheduling

algorithm takes as input a parameter we call S. The S parameter affects the number of

nodes scheduled in a neighborhood of nodes. In fact, at the beginning of each slot,

a node assigns exactly S tickets to each of its neighbors in two-hop distance. It then

generates a sequence of pseudo random numbers for each of them using the unique ID

of the nodes as seed. The idea behind this mechanism is that by knowing the ID of their

neighbors, different nodes can generate the same sequences of numbers associated with

a node. The nodes in the neighborhood then start a competition in which the numbers

generated and the neighbor relation among the nodes determine the way tickets are

6

Figure 1.4: Overview of the proposed solution

decreased. Those nodes that have at least one ticket left at the end of the competition

know they are scheduled and thus can stay active for the duration of the current slots.

The other nodes switch off their NIC. This competition repeats at the beginning of each

slot. Randomization gives the nodes the same opportunity to be scheduled. If nodes need

higher priority, then traffic prioritization at node level is applied using techniques such

as Weighted Fair Queuing (WFQ) [6]. The algorithm behind the scheduler is described

in more details in Chapter 3.

The backbone algorithm creates a dynamically changing network of a subset of

remaining active nodes to ensure reliable data forwarding. In the example in Figure 1.4,

two of the nodes that are not scheduled become part of the backbone (the Coordinator

nodes). The nodes of the backbone (called coordinators) are selected periodically in

special communication slots (called BcastSlots). The selection of the coordinators is

based on the nodes’ remaining battery lifetime and their utility. The utility is a measure

of how many pairs of neighbors the node would connect if it becomes part of the back-

bone. Nodes volunteer to become coordinators through an announcement message. At

7

the beginning of the BcastSlot each node sets up a delay that depends on its remaining

battery and utility. The nodes that announce itself first become coordinators and are

required to stay active until the next BcastSlot where the announcement process starts

over. Therefore, the delay of the announcement is the key of the backbone creation

mechanism. The more battery energy remaining at a node, and the more its utility, the

less the delay of its announcement is and it thus has a higher probability of becoming

a coordinator. This mechanism also ensures that the coordinators change dynamically

as the batteries of the nodes drain. Being a coordinator is an energetically expensive

task because coordinators are required to stay active and forward the data coming from

the neighbor nodes. The backbone algorithm makes sure that those nodes with more

energy in their battery are selected to become part of the backbone. More details about

the backbone creation and maintenance algorithm are given in Chapter 4.

Finally, the information about the active nodes scheduled by the scheduler and

the coordinators selected by the backbone algorithm are merged as shown in Figure 1.4

(Result). Result specifies for each node whether it is active/sleeping and which ones act

as coordinators. This information is then made available to the routing layer that is now

aware of the status of the nodes and can make the proper routing decisions.

Since our solution is between the MAC and the routing layers, we ensure an in-

expensive, quickly deployable, and flexible solution. MAC layer changes tend to be ex-

pensive as they usually involve the design of new hardware,firmware and device drivers.

Also, since the routing layer is given the information regarding the active nodes in the

network, we provide the flexibility to implement the routing algorithm most suitable for

any specific network. We implement a greedy geographic algorithm in which a node first

attempts to forward a packet to a coordinator that is closest to the destination to test our

ideas. If such a coordinator does not exist, it then tries its nearest scheduled neighbor. If

a forwarder is not found, then a hole is encountered and the packet is dropped.

The solution presented in this thesis introduces a new approach in achieving

energy savings while maintaining performance in wireless networks. Our low-power

scheduling algorithm was designed to be free from any assumption on the network topol-

8

ogy and is suitable for multi-hop routing scenarios. Its combination with the forwarding

backbone mechanism represents a novel approach based on a unique TDMA scheme

where nodes decide to go to sleep in a distributed fashion and synchronize during spe-

cific slots to maintain the network connected. In the next section, we outline related

work and highlight the differences with our solution.

Chapter 2

Related Work

Recent deployments of heterogeneous wireless sensor networks with applica-

tions sensitive to latency and/or throughput have raised interest in research activities

focusing on QoS-aware and/or energy efficient techniques. Inherent unpredictability of

the wireless channel and limitations in design of commonly used MAC protocols lead to

difficulty in guaranteeing QoS. For example, IEEE 802.11 MAC uses a random backoff

mechanism when collisions occur, thus reducing the overall throughput, increasing the

power-consumption and the delay.

One approach to improve performance in terms of throughput and/or energy con-

sumption is to revise the MAC layer algorithms. For example PAMAS[5] powers off the

wireless NIC during transmission of packets not addressed to the node. Enhanced DCF

(EDCF)[16] prioritizes traffic categories with different contention parameters. In con-

trast the original DCF algorithm cannot give prioritized service to the user. According

to the priorities, a wireless node can implement up to eight transmission queues. Each

transmission queue has different parameters that decide its backoff time. With this,

EDCF gives more chances of channel access to high priority traffic. EDCF is compatible

with legacy DCF while providing a differentiated service. Distributed Fair Scheduling

(DFS) in [24] differentiates the backoff interval (BI) according to the packet length and

traffic class. As the node with the smallest BI transmits packets first, DFS enables the

9

10

service differentiation by adjusting BI values. The Opportunistic Auto Rate (OAR) pro-

tocol in [19] exploits the automatically adjusted transmission rate of 802.11. The OAR

protocol sends multiple back-to-back data packets when the channel quality is good.

To enable this, it changes the information fields in RTS/CTS packets to send more data

packets in a reserved transmission time slot. All the algorithms in this category require

modifying the existing DCF mechanism or the packet headers. Therefore, it is difficult

and expensive to apply the above algorithms to the existing network devices. Generally,

altering the MAC layer implies significant changes in hardware, firmware, and device

drivers. It cannot be easily applied to the previously deployed networks without sig-

nificant additional cost. On the other hand, scheduling above MAC layer gives more

flexibility. It can be implemented through software modifications; hence it is more cost

effective. Some of the recent work focuses on scheduling data delivery above the MAC

layer, which we summarize next.

Overlay MAC layer (OML)[23] adds an additional conceptual layer over the

existing 802.11 MAC, thus enabling the use of COTS. OML uses loosely synchronized

time clocks to divide the time into equal size slots and employs a distributed algorithm to

allocate these slots among competing nodes. By allowing only one host to access wire-

less media for a time slot, OML alleviates unfairness problems including the throughput

imbalance among asymmetric sender transmit rates; it uses a fair allocation algorithm

with support for arbitrary weights to nodes. SWAN[1] is a rate control mechanism for

TCP and UDP traffic which works on the best-effort MAC. SWAN provides service

differentiation and sender-based admission control. The strength of the SWANs model

is that it is a distributed mechanism and works with feedback from the network. In

fact, it collects the feedback information from the MAC layer or from other network

nodes. SWAN improves throughput and achieves good fairness among different types

of traffic. However, it does not consider the energy consumption of the wireless nodes.

Both Overlay MAC and SWAN assume that the nodes in the network continuously listen

to a channel. Reducing energy consumption of nodes is not considered in their work.

Combining scheduling and power management is presented in[8]. The algorithm per-

11

forms a distributed transmit power control while scheduling wireless nodes in order to

eliminate strong interference. However, this mechanism requires a separate contention-

free feedback channel for sending information about radio conditions. Furthermore, the

scheduling algorithm depends on a central controller node. The TDMA based protocol

in [13] gives a simpler control scheme; a server periodically broadcasts a control packet

which contains the scheduling information of each client station. A client awakes at a

predetermined time to transmit a series of data packets after which it transitions into a

power-save mode. Since only one station is activated at any given time, it can complete

transmissions during the short interval and stay in its power-save mode for a long time.

In contrast, we use a distributed mechanism in which nodes can decide when to transit

into a sleep state without exchanging control packets with a central server node or its

neighbors. Distributed scheduling is an important characteristic of the scheduling algo-

rithm used in our solution. In fact, centralized scheduling is vulnerable to the failure

of the single control node. In previous work, running distributed scheduling algorithms

on wireless networks has been discussed ([18], [17] and [25]). Although these algo-

rithms work in a distributed way, they assume a special framing of radio channels [17],

a separate radio channel [25], or the traversal of the entire network using a special token

[18].

Our scheduling algorithm is based on the ideas presented in [14] and [7]. Schedul-

ing is used as a mechanism to save power and to reduce contention. In contrast to [14][7],

in this work we adapt scheduling to a multi-hop context. In fact, the node-level schedul-

ing algorithm in [14][7] is used in networks where nodes are grouped in well defined

cells where each node is in one-hop distance with its Base Station (the destination).

Instead, we don’t make any assumption on the network topology, and source and desti-

nation nodes can be at any arbitrary distance (number of hops away from each other). To

achieve this, the scheduling algorithm synchronizes with a novel dynamic backbone cre-

ation algorithm that enables multi-hop routing of data in an energy efficient and timely

manner.

SPAN[3] also builds a dynamic backbone of nodes to deliver the data throughout

12

the network. While SPAN assumes that every node is always able to transmit and re-

ceive, our solution uses scheduling based on TDMA to reduce the energy consumption

by placing a large fraction of nodes to sleep. All nodes are active only during infrequent

BcastSlots during which the forwarding backbone is created as described in Chapter 4.

Furthermore, SPAN relies on the 802.11 Power Saving Mode (PSM)[2] as its power sav-

ing mechanism while we use our low-power scheduling algorithm. SPAN also applies

a set of modifications to the PSM thus requiring a new MAC design. These modifica-

tions aim to improve performance and energy savings. The optimizations made to the

PSM give more opportunities to the nodes to go to sleep, thus increasing power savings.

A node with an unmodified PSM would have significantly higher power consumption

since it would have to stay awake for a larger proportion of time. Instead, in our so-

lution, we do not apply any modification to the MAC layer but still achieve significant

energy savings with better latency relative to SPAN.

Once a routing backbone is created, an actual routing strategy should be imple-

mented to decide how packets will be delivered. While this is not the focus of our work,

many energy-aware routing algorithms have been presented in literature. In [22] several

power aware routing metrics that increase the lifetime of the nodes and the network are

described. Geographic based routing is described in [9]. In geographic based routing

forwarding decisions are based on the position (geographic coordinates) of a node, its

neighbors and the destination. This algorithm [9] draws a line that intercepts the current

node and the destination. Next, one candidate above and one below this line are selected

by using heuristics that minimize power, cost and the angle formed by the current node,

candidate node, and the destination. The next hop that is chosen has a higher probability

of being closer to the direction of the destination.

In summary, when compared to previous work, our solution offers a more flex-

ible and low-cost solution that is independent of the specific medium access protocol

used in the network, and is fully distributed. It achieves large power savings while de-

livering data with lower latency. We next outline the scheduling algorithm designed

to minimize the energy consumption and show its efficiency through simulations and

13

measurements. Chapter 4 discusses how to couple our scheduler with a novel dynamic

backbone creation and maintenance algorithm. The perfomance of our solution is eval-

uated through simulations in Chapter 5; finally we conclude in Chapter 6.

Chapter 3

Scheduling Algorithm

In this chapter we describe a distributed scheduling technique that enables nodes

to save power by spending a large amount of time in the sleep state. Simulation results

in [14] show that the distributed node-level scheduling algorithm, by limiting the num-

ber of active nodes in the network, achieves considerable power savings and increases

throughput. In order to verify this idea we tested the distributed node-level scheduling

algorithm described in [14] in a testbed network composed of eight nodes and took mea-

surements on power consumed, packet delay and throughput. In addition we show with

our measurements how packet delay can be handled by using node level packet prioriti-

zation. In this chapter we describe the scheduling algorithm and compare the values we

measured with the simulation results in [14]. The purpose of the measurements shown

in this chapter is to verify the effectiveness of the scheduling algorithm that, when com-

bined with the forwarding backbone mechanism presented in Chapter 4, represents the

unique solution that is the subject of this thesis.

3.1 The scheduling algorithm

When employed in large-scale wireless networks, the 802.11 protocol can see

significant reductions in throughput due to contention and interference. Figure 3.1

14

15

Figure 3.1: Throughput drop as a function of the number of nodes transmitting at full

MAC queues

shows the results of a simulation that calculate the aggregate throughput while nodes

are transmitting with full MAC queues. Simulations where conducted with the ns-2

simulator [21] version 2.28 with typical 802.11 MAC/PHY settings [14] and RTS/CTS

disabled. In this simulation, there is one base station (access point) and several wireless

nodes around it. Wireless nodes generate UDP data traffic and send it to the base station.

The total amount of generated traffic is set higher than the aggregate throughput, so that

MAC layer queues are always full. We change the number of transmitting nodes and

measure the aggregate throughput at the base station. We observe that as the number of

wireless nodes transmitting data at the same time increases, the throughput falls. This is

because in heavy traffic conditions, the chance of nodes to successfully transmit a packet

decreases dramatically as nodes spend a lot of time waiting for the channel to become

idle [15]. Intuitively, from Figure 3.1 it is clear that we can get a higher throughput by

limiting contention to only a few nodes at a time.

The scheduling algorithm is a TDMA solution that gives opportunities to the

nodes to save energy by powering off their wireless communication device. At each

TDMA slot, it determines in a distributed fashion, which nodes must stay active and

16

which ones can switch off their NIC. The TDMA scheme assumes that the timers of the

nodes are loosely synchronized; we allow margin of error of up to a few milliseconds.

Therefore, we can use any lightweight timer synchronization. For instance, the 802.11b

TSF[2] is such a synchronization mechanism.

To describe the scheduling algorithm, we define the network graph G = (V, E)

where V is the set of vertices that represent the nodes, and E is the set of edges rep-

resenting the neighbor relationship between the nodes. If a node vi ∈ V is a one-hop

neighbor of the node vj ∈ V , then (vi, vj) ∈ E. Let AV be the schedule assignment

(output of the algorithm), where AV ⊆ V . Let N(vi) be the set of neighbor nodes of

vi ∈ V . At vi, let the set of active nodes which are in {vi}∪N(vi) be AV (vi). Then the

set of active nodes in the network is the set AV that is:

AV =
⋃

AV (vi), vi ∈ V (3.1)

Then the basic constraint in the scheduling problem is that the number of neigh-

boring active nodes should not exceed the given parameter S:

|AV (vi)| ≤ S,∀vi ∈ V (3.2)

where |AV (vi)| is the number of nodes in AV (vi).

Work in [14] shows that an assignment that maximizes the size of AV (called

maximum assignment) for S ≥ 1 is NP -complete. Thus, the scheduler implements

maximal assignment: nodes are scheduled so that the number of active nodes is maximal

(it does not exceed S). Intuitively, a node can decide to be scheduled if the sum of active

nodes in its neighborhood is lower than the constant S. Then, a node does not need

to know the whole network topology. In fact, a node running the scheduling algorithm

needs only the knowledge of its two-hop neighbors (the nodes in two-hop distance). We

call this partial network topology a subnetwork.

The size of the subnetwork is an important factor. Maintaining topology infor-

mation of a whole network at every node results in a high overhead at runtime whenever

a new node joins/leaves the network or when, for any reason, it fails. The larger the size

17

a) Node connectivity nearby n10 b) Two-hop subnetwork for n10

c) Scheduled nodes

Figure 3.2: Example of running the scheduling algorithm on node v10

of the network, the more expensive it is to propagate the information of a network topol-

ogy change to all the nodes. The subnetwork for node vi, is defined as the subnetwork

graph Gi = (Ei, Vi) which is a subset of G = (V, E). All vertices and edges within

two hops distance from vi are added to the subnetwork Gi = (Ei, Vi). An example of

building a subnetwork is given in Figure 3.2 (a) (b). Figure 3.2(a) shows a subset of

nodes in a generic network graph G = (V, E) and their connectivity. Figure 5(b) shows

the subnetwork G10 = (E10, V10).

18

Algorithm 1 Pseudo-code of the scheduling algorithm

Given the two-hop distance subnetwork Gi = (Ei, Vi), node vi:

1: Assign S tickets to each node in the subnetwork:

tk(vj)← S for ∀vj ∈ Vj

2: Generate pseudo-random numbers for each node in the subnetwork:

rnj = rand(idj + slotno), ∀vj ∈ Vi

3: Add the nodes into a set of unchecked nodes:

V ′ ← V

4: Pick the node vj from V ′ with the greatest pseudo-random number

5: Determine if vj can be scheduled. vj is schedulable iff

tk(vj) ≥ 1, ∀vj ∈ {vi} ∪ (N(vi) ∩ AV)

6: If vj is schedulable, add it to the assignment of active nodes, and decrease the tickets

of vj and all its neighbors:

AV ← AV ∪ {vj},

tk(vj) = tk(vj)− 1,∀vj ∈ {vj} ∪N(vj).

7: Remove vj from the unchecked nodes set:

V ′ ← V ′ − {vj}

8: if (V ′ is empty) then Go to step 4

else Return the list of scheduled nodes AV .

At the beginning of a slot, each node in the network run the distributed schedul-

ing algorithm. Next, we describe its steps and give an example of a run of the algo-

rithm at node v10 given the subnetwork shown in Figure 3.2(b). The pseudo-code for

the scheduling algorithm is shown in Algorithm 1. As a first step, it assigns tickets

and pseudo-random numbers to each node in its subnetwork (steps 1-2). The pseudo-

random numbers are generated using the sum of the node IDs and the current sequential

slot number as the seed. The number of initial tickets in each node is equal to the pa-

rameter S of our algorithm. Whenever the algorithm runs, the number of tickets tk(vj)

19

is initialized to S and the random numbers are generated again. In step 3, it creates a set

of unchecked nodes V that include all nodes in Vi. In step 4 the algorithm extracts the

node vj with the greatest pseudo-random number from V . To determine if the node is

schedulable (step 5), it checks if the tickets of the active nodes that are neighbors of the

unscheduled node vj , and vj itself, are equal to or greater than 1. If so, node vj is added

to the set of active nodes AV and the tickets of vj and all of its neighbors are decreased

(step 6). If the number of active nodes that are neighbors of the unscheduled node vj

is equal to or greater than S, the number of tickets at vj cannot be greater than zero,

tk(vi) < 1. If the latter is the case, vj is not scheduled because vj already consumed its

tickets. In either case, vj is removed from the set of unchecked nodes V (step 7). When

all nodes in the subnetwork have been checked for schedulability (V is empty, step 8),

the algorithm returns the list AV of active nodes.

An example of the scheduling algorithm with S = 3 running on node v10 is

shown in Figure 3.2 (c). First, we find v10’s two-hops subnetwork G10 = (E10, V10)

depicted in Figure 3.2 (b). Lets suppose that the node with the lower ID has the lower

pseudo-random number value. The scheduling algorithm first schedules v3, the node

with the lowest random number. After v3 is scheduled, the number of tickets at v11,

v7, v19 and v3 itself are decreased by 1. As a result, we get tk(v3) = 2, tk(v11) = 2,

tk(v7) = 2 and tk(v19) = 2. In the same way v5, v7 and v8 are scheduled. At this

point v10 has the lowest random number. Since tk(v10) = 1 and the number of tickets

of its active neighbors v7 and v5 are greater than 0 (tk(v5) = tk(v7) = 1), node v10 is

scheduled. The result from running the scheduling algorithm over the subnetwork in

Figure 3.2(b) is shown in Figure 3.2(c).

3.2 Simulation Results

In this section we present a summary of the simulation results from [14] together

with a brief analysis and discussion with the goal of comparing them with measurments

on a testbed (see Section 3.3). Simulations are run on the ns2 network simulator [21].

20

Figure 3.3: Hexagonal network topology used in the simulations for the scheduling

algorithm

Simulation parameters for 802.11b are set for the typical IEEE 802.11b wireless channel

[26] [27]. The parameters for power in each power mode are from the data sheet of the

Cisco Aironet wireless LAN adapter [4] and the measurements presented in [12]. The

size of the network is 533m by 550m and nodes are deployed with a hexagonal network

topology as shown in Figure 3.3 that approximates the density of the HPWREN SMER

subnetwork used to collect data traces.

3.2.1 Results for data traffic collected at HPWREN

The results shown in this section refer to simulations using real data traffic col-

lected at HPWREN where nodes have an average data rate of 136 Kbps. As shown in

Figure 3.4(a), the scheduling algorithm achieves great power savings: up to 85.54 %

of communication power is saved. Average throughput and MAC layer transmission

delay are shown in Figure 3.4(b) and Figure 3.4(c). We observe that the MAC delay is

considerably reduced and throughput is improved by up to 10.31 %. The reason for this

is that using scheduling on a given network reduces the number of contending nodes in

the channel; consequently, the MAC layer delay is reduced. However, because of the

TDMA based scheme of the algorithm the application layer delay increases according

to the slot size adopted as shown in Figure 3.4(d). Unscheduled nodes in fact wait in

a sleep mode while buffering data from applications. It is unavoidable to experience a

21

Figure 3.4: Simulation results of the node-level scheduling algorithm in hexagonal

topology using data collected from HPWREN

certain level of application layer delay in scheduling techniques which use a sleep mode

interface device. However, it is possible to efficiently handle the delay by prioritizing

traffic, such as with weighted fair queuing [6] as discussed in Section 3.4. Another way

to reduce the application layer delay is by minimizing the size of the scheduling slots as

shown in the next section.

3.2.2 Effect of different scheduling slot sizes

The results on the average throughput and communication power with different

slot sizes are shown in Figure 3.5. In Figure 3.5(a), we see that the amount of overhead in

22

Figure 3.5: Simulation results of the node-level scheduling algorithm in hexagonal

topology using different slot sizes

scheduling is inversely proportional to the length of the scheduling slot. If the scheduling

slot is short, nodes switch their modes more frequently. This phenomenon causes more

mode transitions. Frequent mode transitions result in the reduction of throughput. The

same applies to power consumption. When the wireless interface switches its mode,

it consumes at least as much power as it does in the idle mode. Mode transitions also

take a certain transition time to wake up and go to sleep. Thus, it is expected that

scheduling with the shorter slot size reveals more overhead in energy consumption as

shown in Figure 3.5(b). In order to improve the average throughput and save more

communication power it is better to use longer time slots. However, it causes a longer

delay. This tradeoff is a key issue in determining the scheduling slot size. Experiments

such those in Figure 3.5 can be used to select the most appropriate slot size for a specific

network depending on node energy budget and application requirements.

3.3 Measurements

In this section we evaluate the performance of the scheduling algorithm pre-

sented in Chapter 3 on a lab setup well representing what is in the field. First, we

estimate the accuracy of the network model used in the simulation and its capacity of

23

simulating contention and its effect on aggregate throughput. Then, we present the re-

sults of our experiments and we compare them to those obtained in the simulations. We

setup a test network consisting of one parent CH and 8 child CHs. A parent CH is a

Desktop PC running Linux connected to an Access Point (Apple AirPort Base Station).

A child CH is an Intel PXA27x board [11] with a Cisco Aironet 350 series wireless LAN

PCMCIA adapter [4] that have similar characteristics to the devices used by child CHs

in SMER section of HPWREN.

3.3.1 Throughput

Figure 3.6 shows the specific performance degradation of our test network. In

this experiment, each node generates a high rate of CBR traffic in order to keep MAC

queues full. The maximum achievable throughput of 5.04 Mbps is obtained when a total

of 3 nodes transmit at the same time. As expected this value is slightly lower (1.56%)

than the one estimated with the simulations in section 3.2 because of small interferences

still present on campus even during off hours.

Figure 3.6 also shows the advantage in terms of throughput provided by our

distributed scheduling algorithm. Our algorithm is independent of the number of nodes

in the network and keeps the aggregate throughput very close to the maximum value. In

the case of 8 nodes in the network, we measure an increase in throughput of about 9.2%

which is very close to what we saw in the simulations in section 3.2 (9.32%).

3.3.2 Power consumption

In this section we measure the average power consumed by the wireless network

interface (Cisco Aironet 350 series [4]). Applying an extender to the PCMCIA slot we

measure the current needed by the communication device. We use the National Instru-

ment DAQPAD6070E to sample the voltage fall on a resistor of 0.100Ω. We acquire

voltage samples while running experiments.

We evaluated different methodologies to save power during the inactive slots.

24

Figure 3.6: Measurement results on aggregate throughput

Figure 3.7: Measurement results on the power consumption of the NIC

The first one is the Power Saving Mode (PSM) provided by the IEEE 802.11 [2]. A

station in PSM turns off its radio and periodically wakes up to check if the AP has data

buffered for it (the default interval is 100ms)[2]. If a station needs to transmit data, it

switches on its radio and transmits it. The second technique we evaluated consists of

turning off the Tx-power. The wireless cards we used in our experiments support this

option. When the Tx-power is off, the station is not able to transmit or receive any

data and it loses the connectivity with the AP. The power savings are larger than with

the PSM since the station avoids periodically switching on the radio to listen to the AP

messages. The delay to turn off the Tx-power is negligible but the wakeup time and time

it takes to reach the transmit state again takes up to 450ms.

Figure 3.7 compares the power consumption of the network interface regardless

25

Figure 3.8: Sample measurement of TX-Power technique

of whether our scheduling algorithm is running or not. We run two implementations

of the algorithm each representing one of the power saving techniques described in the

previous paragraph: 802.11 PSM or Tx-power mode. The Tx-power mode consists

of turning off the Tx-power of the wireless device during the slots in which a node is

not scheduled. Figure 3.8 shows an example of a measurement made on a node in the

network while running our algorithm using the Tx-power mode. This technique allows

us to save about 23% of power when 8 nodes are in the network and it starts gaining

an advantage when there are more than 4 nodes. In our implementation we use slots of

300ms. Since we have a delay of 450ms to wake up the NIC, a node needs at least 2

consecutive inactive slots to turn off/on the Tx-power. If a node has just one inactive

slot, it stays idle. We use an S parameter that is 3. This means that when there are

three nodes in the network a node is always scheduled. When there are 4 total nodes,

the probability for a node not to be scheduled for 2 consecutive slots is very low. This

probability increases with the number of nodes in the network and so produces power

savings.

Using the PSM gives a small advantage. As shown in Figure 3.7, our scheduling

algorithm combined with the PSM can only achieve a maximum power savings of 6.1%.

In fact when a node transits from an active slot to an inactive one it is hardly expected to

go to sleep. This is because at the end of an active slot, a node is likely to have packets

left to send in its MAC queue. So even if the node is not scheduled, it keeps transmitting

26

Figure 3.9: Measurement results on application layer delay

until it empties its MAC queue. This has two main consequences; first, the node does

not save power; second, the packets it transmits interfere with the data sent by the S

active nodes elected by the scheduling algorithm. This increases congestion and causes

throughput to fall. Instead with the Tx-power technique, the radio is off at the end of an

active period and no packets can be transmitted.

3.3.3 Application delay

In this section we compare the average application delay recorded by the packets

for whether our algorithm is running or not. Two different slot sizes are used: 0.1s

and 0.3s. The traffic rate and the S parameter used are analogous to the simulation

experiments in section 3.2.1. As expected, the choice of the slot size has a large effect

on the average packet delay as shown in Figure 3.9. As the slot size increases, the

application delay increases accordingly. As explained in Section 3.2.2 the choice of the

slot size is a tradeoff between throughput and delay on one hand and power consumption

on the other. This choice depend on node battery budget and application requirements.

In the next section we show the results of our experiments on traffic prioritization to

efficiently handle application layer delay for those applications with high priorities.

27

3.4 Traffic Prioritization

The delay introduced by the TDMA scheduling algorithm may represent a prob-

lem for those applications that have high priority packets that need to be delivered in a

timely manner. Thus, we added a traffic prioritization mechanism so that when a node

is not scheduled (thus unable to transmit), it buffers data to different priority queues.

Policies such as WFQ [6] and DWRR [20] can be applied to decide the order of the

outgoing packets once the node is active and can flush its buffers.

We implemented a WFQ policy at each node. The idea behind WFQ is to serve

packets in the order in which they would have finished transmission in the fluid flow

system (where traffic is infinitely divisible and a node can serve multiple flows simul-

taneously). WFQ is a type of packet-by-packet generalized processor sharing (GPS).

It emulates GPS by calculating the departure time of a packet (called the virtual finish

time) and uses this virtual stamp to schedule the packets in the queues. In our imple-

mentation, a queue with weight w is associated with each flow with a different priority.

The higher the w the smaller the bandwidth given to the associated flow. A flow can

be either backlogged (active) or nonbecklogged (inactive). A flow is backlogged when

there is data in its queue, and nonbacklogged otherwise.

When a packet k enters a queue i, a sequence number Seqk (representing its

virtual finish time) is associated with packet k. Then, the packets in the queues are

scheduled to be sent in increasing order of sequence numbers. The sequence numbers

are calculated as follows. If packet k arrives while the flow is inactive (nonbacklogged),

then its sequence number is:

Seqk = roundnumber + (wi ∗ Sizek) (3.3)

where the roundnumber is the number of bytes sent so far and Sizek is the size ofpacket

k in bytes. wi is the weight associated with queue/flow i. If the packet k arrives while

the flow is active (backlogged), then the sequence number is:

Seqk = Seqk−1 + (wi ∗ Sizek) (3.4)

28

Figure 3.10: Example of the WFQ policy implemented at node level

An example of running our implementation of WFQ is given in Figure 3.10.

Three priority queues are defined, A, B, and C with weights 300, 600, 1000 respectively.

The packet size is shown between parenthesis and the current round number is 100.

Packets arrive in the order specified in the input queue on the left. When a packet arrives,

its priority determines the queue it is assigned. Once it enters the queue, the sequence

number is computed according to Equation 3.3 and Equation 3.4. For instance, when

packet A1 enters queue A that is inactive (nonbacklogged), its sequence number is:

seqA1 = roundnumber + (wA ∗ SizeA1) = 100 + (300 ∗ 128) = 38500. The sequence

numbers are shown below each packet in the queue. Finally, packets are scheduled in

increasing order of sequence number as shown in the output queue.

Figure 3.11 shows the measured application delay of experiments where packets

are assigned a random priority and WFQ is applied. We define three priorities: 1, 2, and

3, corresponding to weights 100, 200, and 300 respectively. Priority 1 is then the highest

since it is assigned the lowest weight. As expected, prioritization provides for an easy

way to control the application layer delay. From figure 3.11 we see that when the traffic

load is high (above 5Mbps) the scheduling algorithm outperforms the 802.11; in fact,

in high traffic load, high priority data has a lower application layer delay. Therefore,

when the network gets overloaded with data our scheduler can not only save a lot of

29

Figure 3.11: Measurement results on aggregate throughput

energy and improve throughput, but it can also provide a more predictable and lower

application layer delay.

Chapter 4

Forwarding Backbone

Minimizing energy is an important challenge in wireless networks. While the

scheduling algorithm presented in Chapter 3 is an efficient solution to save power, it

does not consider the routing problem. In fact, by scheduling only a limited number of

nodes at each slot, those nodes that are in sleep mode with their NIC off can break the

connectivity of the network.

Connectivity in our context it is defined as follows: if two nodes are reachable

to each other through one or more hops when all the nodes are active, they must also be

able to communicate under scheduling. This property must be true at all times (for every

slot). In order to maintain connectivity, we combine scheduling with a forwarding back-

bone that is in charge of maintaining connectivity of the nodes. It is also responsible for

the delivery of data throughout the network. The forwarding backbone is composed of

a subset of nodes called coordinators that are guaranteed to stay active for a predefined

period of time and are selected in a way that no node is left disconnected.

Creating such a backbone faces two main challenges related to energy consump-

tion. First, being a coordinator is an energy expensive task because the node is required

to keep the communication device active. The wireless interface, when active, is a power

hugry component that drains batteries very quickly. Furthermore, the backbone is re-

sponsible for forwarding the data throughout the network, meaning that coordinators

30

31

spend most of the time in the two most power consuming states that are the receive (RX)

and transmit (TX) states (see Table 5.1). This suggests that to lower the energy con-

sumption, the number of coordinators should be minimized. Second, if the forwarding

backbone is defined as a static subset of nodes that become coordinators, then those

nodes would quickly run out of energy. As a consequence, the network might become

permanently disconnected and partitioned. Instead, it is desireble to have a homoge-

neous distribution of the energy consumption in the network to ensure longer network

lifetime and avoid partitioning. Therefore, the task of being a coordinator should be

fairly assigned among nodes and should dynamically change over time to ensure even

distribution of energy in the network. To achieve these goals we developed the for-

warding backbone algorithm whose key component is the coordinator election process

described in the next section.

The backbone algorithm creates a dynamically changing network of a subset of

remaining active nodes to ensure reliable data forwarding and to maintain connectivity.

In Chapter 1 we saw an example of how the scheduling and the forwarding backbone

algorithms are combined (Figure 1.4). They share the same TDMA scheme and syn-

chronization. The coordinators are selected periodically in special communication slots

(called BcastSlots). The selection of the coordinators is based on the nodes’ remaining

battery lifetime and their utility. The utility is a measure of how many pairs of neigh-

bors the node would connect if it becomes part of the backbone. Intuitively, the utility

is a parameter used to minimize the number of coordinators required to keep the nodes

connected. In fact, it expresses the concept that those node that connect the most neigh-

bors should be selected. As a result, less coordinators will be needed to connect all the

nodes. Nodes volunteer to become coordinators through an announcement message. At

the beginning of the BcastSlot each node sets up a delay dependent on its remaining

battery and utility. The nodes that announce itself first become coordinators and are

required to stay active until the next BcastSlot where the announcement process starts

over. Therefore, the delay of the announcement is the key to the forwarding backbone

creation mechanism. The more battery energy remaining at a node, and the more its

32

Figure 4.1: BcastSlot and BcastPeriod

utility, the less the delay is of the announcement and thus the higher its probability is

in becoming a coordinator. This mechanism also ensures that the coordinators change

dynamically as the battery of the nodes drains. Being a coordinator is an energetically

expensive task because coordinators are required to stay active and forward the data

coming from the neighbor nodes. The backbone algorithm makes sure that those nodes

with more energy in their battery are selected to become part of the backbone. In the

next section we describe how the coordinator election process works, formalize the con-

cept of utility, and show how we compute the delay at the beginning of the BcastSlot.

4.1 The coordinator election process

A node volunteers to become a coordinator during the periodic BcastSlot (Fig-

ure 4.1) by sending an announcement message. The announcement message contains

information about the sender and its neighbors. It includes the list of the node’s two-hop

neighbors, specifying which ones are the coordinators and which ones are not (the status

of a node). If two neighbors of a non-coordinator node cannot reach each other directly

or via a maximum of two coordinator hops, then such a node is eligible to become a

coordinator.

Given the network graph G = (E, V), node vi ∈ V has a two-hop subnetwork

Gi = (Ei, Vi). Let Bi be the the set of coordinators in the subnetwork of node vi,

33

Bi ⊆ Vi. Let Pj,k be the set of paths of lenght 2 and 3 from nodes (vj, vk), where

vj, vk ∈ N(i) − {vi} and vj 6= vk. Formally, the coordinator eligibility rule states that

node vi is eligilble to become a coordinator if:

∀vj, vk ∈ N(i)− {vi}, vj 6= vk, @p ∈ Pjk|pi ∈ B, ∀pi in p = (pj, ..., pk) (4.1)

The nodes compete during the BcastSlot by carefully timing their announce-

ments for becoming a coordinator. This delay is computed as a function of the residual

energy currently available at the node and its utility. The utility, formally defined below,

is the number of additional pairs of nodes Ci among the neighbors Ni that would be

connected if node i became a coordinator.

utility =
Ci(
Ni
2

) . (4.2)

Let Er denote the amount of energy at a node that still remains and Em the

maximum amount of energy available at the same node. We define the delay of the

announcement message as:

delayi = ((1− Er

Em
) + (1− utilityi))×Ni (4.3)

The delay is normalized to the duration of the slot. As more energy is available at a

node, its utility is higher, then the delay to sending an announcement message is lower,

and it gives the node a higher chance of becoming a coordinator.

At the beginning of a BcastSlot a node checks if the eligibility rule holds. If

it does so, it sets the delay for the announcement message according to Equation 4.3.

While a node waits for the delay to expire, it might receive other announcement mes-

sages from its neighbors which have set a lower delay, and possibly changing the knowl-

edge of the status of its neighbors (again, status specifies whether a node is a coordina-

tor or not). Therefore, just before broadcasting the announcement message, a node must

check if the coordinator eligibility rule still holds. Then the header of the announcement

message is filled out with the information regarding the nodes neighbors with their sta-

tus and the status of the node itself. Finally, the announcement message is broadcast.

34

At the end of the BcastSlot, those nodes that are coordinators must stay awake until the

next BcastSlot and forward the data coming from its neighbors.

4.2 Combining scheduling and forwarding backbone

The scheduling and forwarding backbone algorithms run on the same TDMA

scheme. As shown in Figure 4.1, time is divided into fixed-size slots. Periodically,

during the BcastSlot all the nodes are required to be active. In the BcastSlot, all the

nodes run the backbone algorithm to create the set of coordinators that build the data

forwarding backbone. At the end of the BcastSlot, those nodes that are coordinators

must remain active until the next BcastSlot when the backbone algorithm is run again

and a new set of coordinators are selected according to the mechanism described in the

previous section. Through the announcement process happening during the BcastSlot,

nodes also become aware of their neighbors. Thus, the cases of new nodes joining or

leaving the network (including node failures), will be detected at most in a Bcast Period.

In every slot other than the BcastSlot, those nodes that are not coordinators run

the distributed scheduling algorithm described in Chapter 3 to save power. The out-

put of the scheduling algorithm is the set of active/sleeping nodes. This information,

together with the information about the coordinator nodes, is made available to the rout-

ing layer to make the proper routing decision. For example, in our experiments we use

a geographic forwarding routing protocol in which a node first attempts to forward the

packets to the coordinator that is closest to the destination. If such a coordinator does

not exist, it tries to find a forwarder among the active non-coordinator nodes. If again a

forwarder is not found, then the node drops the packet.

Chapter 5

Results

In this section we evaluate the performance of our solution that combines schedul-

ing with the forwarding backbone mechanism. The main purpose of our solution is to

save energy. Energy consumption is dependent on the number of active nodes in the net-

work and in Section 5.1.1 this relationship is discussed and quantified. We are also inter-

ested on the delay applications should expect when using our solution. In Section 5.1.2,

we show the results on application delay under different scenarios and network topolo-

gies. We compare our results to SPAN algorithm [3] via simulations. Next we describe

the simulation setup and present the results obtained.

5.1 Simulation setup

Simulations were conducted using the ns-2 network simulator [21] version 2.33.

We reproduce a simulation environment very similar to what we observed in the Santa

Margarita Ecological Reserve (SMER), a part of HPWREN. The child CH nodes form

an intra-SMER multi-hop network to deliver data from the sensors to the HPWREN

backbone with 802.11b radios. We simulated a 120-node network in square regions of

different sizes: 1250m x 1250m, 1000m x 1000m, 750m x 750m, and 500m x 500m.

Twenty nodes send and receive traffic. Each of these nodes, if not otherwise specified,

35

36

Table 5.1: Simulation Parameters
Parameter Meaning Value

PTx Transmission power 1400 mW

PRx Receive power 1000 mW

PIdle Power in idle state 830 mW

PSleep Power in sleep state - NIC off 43 mW

Pidle to sleep Power during transition from idle state to sleep state 3 mW

Psleep to idle Power during transition from sleep state to idle state 7 mW

Tidle to sleep Time for transition from idle state to sleep state 2 ms

Tsleep to idle Time for transition from sleep state to idle state 10 ms

generates CBR traffic to another node, sending 128 byte packets. In our experiments,

each sender sends three packets per second, similar to typical sensing scenarios, for a

total of 60 Kbps of traffic. Packet size and traffic rate are the same as in [3]. To make

sure that each CBR flow goes through multiple hops before reaching their destination,

10 source and destination nodes are placed randomly in two 50 meters-wide, full-height

strips at opposite sides of the simulation area. The initial position of the remaining

100 nodes is chosen using uniform distribution over the entire simulated region. This

setup, and the Tx, Rx and Idle state power values are the same as the SPAN algorithm

[3], which we compare our backbone creation algorithm to. The rest of the simulation

parameters are shown in Table 5.1.

To test our solution, we implemented a greedy geographic forwarding protocol.

The routing layer knows which nodes are coordinators and which are currently active.

Given this information, a node that has data to send, first attempts to forward the pack-

ets to the coordinator that is closest to the destination. If such a coordinator does not

exist, then it tries to find a forwarder among the scheduled non-coordinator nodes. If a

forwarder is not found, then the node drops the packet. In our simulations, the module

GOD of ns-2 provides the knowledge of the position of each node.

37

5.1.1 Energy

Energy consumption is strictly related to the number of nodes active in the net-

work. As described in Chapter 3, the S parameter determines the number of non-

coordinator nodes that are active. Figure 5.1 shows that for each simulation area, as

the S parameter increases so does the energy consumption. Less energy is consumed by

the dense topologies (Figure 5.1). For denser networks, fewer coordinators are needed

to keep all the nodes connected. Since scheduling limits the number of active nodes

in a subnetwork, then the overall number of active nodes decreases as the subnetworks

become denser. In summary, the number of coordinators and scheduled nodes increases

as the density of the network decreases.

Figure 5.1: Average per node battery consumption (J) as a function of the S parameter.

Another factor that affects the energy consumption (summarized in Figure 5.1) is

the number of hops a data packet needs to traverse from source to destination. The more

number of hops, the more the nodes are involved in receiving and transmitting data.

These operations are power hungry (Table 5.1). Predictably, the larger the network area

(and so the longer the distance from sources to destinations), the more hops are required.

In fact, for topologies of increasing sizes 500m x 500m, 750m x 750m, 1000m x 1000m,

and 1250m x 1250m, we recorded an increasing average number of hops that are 2.9,

4.5, 6.4, and 8.2 respectively. In summary, as the network size and the number of hops

38

increases, so does the energy consumption.

Figure 5.2: Average per node battery consumption (J) as a function of the S parameter,

for different slot sizes, 100ms, 200ms and 400ms.

Figure 5.2 shows the effect of slot size (100ms, 200ms, 300ms) on energy con-

sumption. We show only the results for the 1000mx1000m topology, as we got similar

results for the other scenarios. As expected, larger slot sizes lead to larger power savings.

Shorter slots cause more frequent state transitions and thus greater energy consumption.

We finally compare our results with SPAN [5]. For the case of the 1000mx1000m

topology, the energy savings shown in [5] (page 9 Figure 8) are 50 %. These are the

energy savings compared to the situation where all the nodes are active (no nodes are

in PSM) and can participate in packet forwarding. For the same topology and S = 2,

our solution achieves similar savings, 53.9 %. Low values of S maximize the energy

savings; we evaluate the impact on latency and compare it with SPAN in the next section.

The main difference with SPAN is that it relies on a set of modifications to the 802.11

PSM in order to reduce power. In contrast, our solution, while achieving similar energy

savings, does not require any modifications to the MAC layer. In this way we achieve

easy deployability and low cost since legacy devices can be used and expensive MAC

modifications can be avoided.

39

Figure 5.3: Average latency (ms) as a function of the S parameter of the algorithm for

different square networks with sides 500m, 750m, 1000m and 1250m

5.1.2 Latency

Figure 5.3 shows the results on average packet delay for different topologies. We

find that in general the delay is higher for larger topologies. This is expected because as

the size of the network increases, the average number of hops a packet must go through

to reach the destination also increases.

The impact of the S parameter on the delay is more evident on the largest simula-

tion area, 1250mx1250m. As the density of the nodes increases and the average number

of hops to reach the destination increases, the scheduled nodes become very useful in

helping the coordinators to forward the packets.

Compared to SPAN [3], we achieve better latency results. From [3] we see that

in the case of the 1000mx1000m topology, SPAN’s average packet latency is 40.5 ms

with 6.1 average hops. With the S parameter set to 2 (the number for which we obtain

the same energy savings as SPAN), our solution decreases in latency by 20.7% with an

average number of hops of 6.4. This is the result of two main factors. First, by reducing

the number of active nodes in the network, our scheduling algorithm reduces contention,

thus reducing the MAC layer delay ([14] [7]). Secondly, those packets that cannot be

routed by a coordinator go through one or more scheduled nodes as shown in Figure 5.4.

40

a) Forwarding through a node in PSM

b) Forwarding through active nodes

Figure 5.4: Forwarding through nodes in PSM vs active nodes, 100ms, 200ms and

400ms.

A scheduled node, compared to a node in PSM as in the SPAN case, is capable of much

faster forwarding.

Chapter 6

Conclusion

We presented an energy efficient mechanism for scheduling and routing in het-

erogeneous wireless sensor networks such as HPWREN. This network offer the chal-

lenge of ensuring that node battery lifetime is long enough for data collection and de-

livery to happen in a timely manner while using COTS to ensure low cost and ease of

deployment. The solution presented in this thesis includes a distributed scheduling al-

gorithm that allows a large portion of nodes to switch off the NIC thus saving energy.

We prove its efficiency by deploying a testbed network, implementing the algorithm on

nodes similar to those of HPWREN and taking measurements on them.

Scheduling is then combined in a unique solution with the creation of a backbone

of nodes in charge of delivering data to the proper destinations. Since being part of the

backbone requires the node to stay awake continuously for a certain amount of time, the

nodes of the backbone are dynamically selected so that those nodes that are more rich

in energy are more likely to become part of the backbone.

By requiring no modifications to the MAC layer, our solution can be easily and

quickly deployed on existing networks such as HPWREN where neither legacy devices

need to be replaced nor firmware or drivers modified. Saving energy also lowers the cost

of network maintenance by avoiding frequent and expensive replacement of batteries.

Compared to previous work ([3]), the solution presented in this thesis achieves

41

42

as good power savings (up to 53%) while delivering packets with a 20% lower delay.

We envision the deployment of our solution in a testbed or subnetwork of HP-

WREN where measurements could confirm the results presented in this thesis. Future

work also includes two main interesting research directions. First, routing policies other

than the greedy geographic forwarding algorithm employed in our simulations can be

tested. In particular, we observe that the routing layer is fed the information about those

nodes that are coordinators, active or sleeping. New routing algorithms can be devel-

oped to exploit this information. Second, since our algorithm is above the MAC layer,

it is interesting to test its performance on a MAC/PHY layer other than the 802.11 and

with different power values and channel access mechanisms.

References

[1] Ahn, G.-S., Campbell, A. T., Campbell, A. T., Veres, A., and hsiang Sun, L., 2002:
Swan: Service differentiation in stateless wireless ad hoc networks. In Proc. IEEE
Infocom 2002, 457–466.

[2] Board, I.-S. S., 2003: Wireless LAN Medium Access Control (MAC) and Phisical
Layer (PHY) Specifications.

[3] Chen, B., Jamieson, K., Balakrishnan, H., and Morris, R., 2001: Span: An Energy-
Efficient Coordination Algorithm for Topology Maintenance in Ad Hoc Wireless
Networks. In 7th ACM MOBICOM. Rome, Italy.

[4] Cisco, 2007: Cisco aironet 802.11a/b/g cardbus wireless lan adapter data sheet.
http://www.cisco.com/.

[5] Corporation, R. A., Raghavendra, C. S., and Singh, S., 1999: Pamas – power aware
multi-access protocol with signalling for ad hoc networks. In ACM Communica-
tions Review, 28, 5–26.

[6] Demers, A., Keshav, S., and Shenker, S., 1989: Analysis and simulation of a fair
queueing algorithm. In SIGCOMM ’89: Symposium proceedings on Communi-
cations architectures & protocols, 1–12. ACM, New York, NY, USA. ISBN 0-
89791-332-9. doi:http://doi.acm.org/10.1145/75246.75248.

[7] Edoardo Regini, T. S. R., Daeseob Lim, 2008: Scheduling above mac to maximize
battery lifetime and throughput in wlans. In IASTED.

[8] ElBatt, T., and Ephremides, A., 2002: Joint scheduling and power control for
wireless ad hoc networks.

[9] Haque, I. T., Assi, C., and Atwood, J. W., 2005: Randomized energy aware routing
algorithms in mobile ad hoc networks. In MSWiM ’05: Proceedings of the 8th
ACM international symposium on Modeling, analysis and simulation of wireless
and mobile systems, 71–78. ACM, New York, NY, USA. ISBN 1-59593-188-0.
doi:http://doi.acm.org/10.1145/1089444.1089458.

43

44

[10] HPWREN, 2009: The high performance wireless research and educational net-
work. http://www.hpwren.ucsd.edu/.

[11] Intel, 2006: Intel pxa27x processor developer’s kit.
http://www.intel.com/pressroom/kits/pxa27x/index.htm.

[12] Jamieson, K., 2002: Implementation of a power-saving protocol for ad hoc wire-
less networks. Master’s thesis, MIT.

[13] Jim Snow, W.-c. F., Wu-chi Feng, 2005: Implementing a low power tdma protocol
over 802.11. In Proc. IEEE WCNC.

[14] Lim, D., 2007: Distributed Proxy-Layer Scheduling in Heterogeneous Wireless
Sensor Networks. Master’s thesis, Univesity of California, San Diego.

[15] Lim, D., Shim, J., Rosing, T. S., and Javidi, T., 2006: Scheduling data delivery in
heterogeneous wireless sensor networks. In ISM ’06: Proceedings of the Eighth
IEEE International Symposium on Multimedia, 575–583. IEEE Computer Society,
Washington, DC, USA. ISBN 0-7695-2746-9. doi:http://dx.doi.org/10.1109/ISM.
2006.133.

[16] Mangold, S., Choi, S., May, P., Klein, O., Hiertz, G., Stibor, L., poll Contention,
C., and Poll, F., 2002: Ieee 802.11e wireless lan for quality of service.

[17] Pond, L., and Li, V., 1989: A distributed time-slot assignment protocol for mobile
multi-hop broadcast packet radio networks. IEEE MILCOM.

[18] Ramaswami, R., and Parhi, K. K., 1989: Distributed scheduling of broadcasts in a
radio network. In INFOCOM, 497–504.

[19] Sadeghi, B., Kanodia, V., Sabharwal, A., and Knightly, E., 2002: Opportunistic
media access for multirate ad hoc networks. In MobiCom ’02: Proceedings of the
8th annual international conference on Mobile computing and networking, 24–35.
ACM, New York, NY, USA. ISBN 1-58113-486-X. doi:http://doi.acm.org/10.
1145/570645.570650.

[20] Shreedhar, M., and Varghese, G., 1995: Efficient fair queueing using deficit round
robin. SIGCOMM Comput. Commun. Rev., 25(4), 231–242. ISSN 0146-4833.
doi:http://doi.acm.org/10.1145/217391.217453.

[21] Simulator, N., 2: ns-2. http://www.isi.edu/nsnam/ns.

[22] Singh, S., Woo, M., and Raghavendra, C. S., 1998: Power-aware routing in mobile
ad hoc networks. In MobiCom ’98: Proceedings of the 4th annual ACM/IEEE
international conference on Mobile computing and networking, 181–190. ACM,
New York, NY, USA. ISBN 1-58113-035-X. doi:http://doi.acm.org/10.1145/
288235.288286.

45

[23] Stoica, A. R. I., 2005: An overlay mac layer for 802.11 networks. In in MobiSys,
2005, 135–148.

[24] Vaidya, N. H., Bahl, P., and Gupta, S., 2000: Distributed fair scheduling in a
wireless lan. In MobiCom ’00: Proceedings of the 6th annual international con-
ference on Mobile computing and networking, 167–178. ACM, New York, NY,
USA. ISBN 1-58113-197-6. doi:http://doi.acm.org/10.1145/345910.345939.

[25] Waharte, S., Xiao, J., and Boutaba, R., 2004: Overlay wireless sensor networks for
application-adaptive scheduling in wlan. In HSNMC, 676–684.

[26] Xiuchao, W., 2004: Simulate 802.11b channel within ns2. Technical report, Na-
tional University of Singapore.

[27] Xiuchao, W., and Ananda, A. L., 2004: Link characteristics estimation for ieee
802.11 dcf based wlan. In LCN ’04: Proceedings of the 29th Annual IEEE In-
ternational Conference on Local Computer Networks, 302–309. IEEE Computer
Society, Washington, DC, USA. ISBN 0-7695-2260-2. doi:http://dx.doi.org/10.
1109/LCN.2004.73.

	Signature Page
	Dedication
	Table of Contents
	List of Figures
	List of Tables
	Acknowledgements
	Abstract of the Thesis
	Chapter 1. Introduction
	Chapter 2. Related Work
	Chapter 3. Scheduling Algorithm
	The scheduling algorithm
	Simulation Results
	Results for data traffic collected at HPWREN
	Effect of different scheduling slot sizes

	Measurements
	Throughput
	Power consumption
	Application delay

	Traffic Prioritization

	Chapter 4. Forwarding Backbone
	The coordinator election process
	Combining scheduling and forwarding backbone

	Chapter 5. Results
	Simulation setup
	Energy
	Latency

	Chapter 6. Conclusion
	References

